A285388 a(n) = numerator of ((1/n) * Sum_{k=0..n^2-1} binomial(2k,k)/4^k).
1, 35, 36465, 300540195, 79006629023595, 331884405207627584403, 22292910726608249789889125025, 11975573020964041433067793888190275875, 411646257111422564507234009694940786177843149765, 56592821660064550728377610673427602421565368547133335525825
Offset: 1
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..40
Crossrefs
Programs
-
Magma
[Numerator( n*(n^2+1)*Catalan(n^2)/2^(2*n^2-1) ): n in [1..21]]; // G. C. Greubel, Dec 11 2021
-
Mathematica
Table[Numerator[Sum[Binomial[2k,k]/4^k,{k,0,n^2-1}]/n],{n,1,10}] Numerator[Table[2^(1-2 n^2) n Binomial[2 n^2,n^2],{n,1,10}]] (* Ralf Steiner, Apr 22 2017 *)
-
PARI
A285388(n) = numerator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)); \\ Antti Karttunen, Apr 27 2017
-
PARI
a(n) = m=n*binomial(2*n^2, n^2);m>>valuation(m,2) \\ David A. Corneth, Apr 27 2017
-
Python
from sympy import binomial, Integer def a(n): return (Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).numerator # Indranil Ghosh, Apr 27 2017
-
Sage
[numerator( n*(n^2+1)*catalan_number(n^2)/2^(2*n^2-1) ) for n in (1..20)] # G. C. Greubel, Dec 11 2021
Formula
a(n) is numerator of n*binomial(2 n^2, n^2)/2^(2*n^2 - 1). - Ralf Steiner, Apr 26 2017
Extensions
Edited (including the removal of the author's claim that this leads to a proof of the Legendre conjecture) by N. J. A. Sloane, May 01 2017
Formula section edited by M. F. Hasler, May 02 2017
Edited by N. J. A. Sloane, May 10 2017
Comments