A285896 Sum of divisors d of n such that n/d is not congruent to 0 mod 5.
1, 3, 4, 7, 5, 12, 8, 15, 13, 15, 12, 28, 14, 24, 20, 31, 18, 39, 20, 35, 32, 36, 24, 60, 25, 42, 40, 56, 30, 60, 32, 63, 48, 54, 40, 91, 38, 60, 56, 75, 42, 96, 44, 84, 65, 72, 48, 124, 57, 75, 72, 98, 54, 120, 60, 120, 80, 90, 60, 140, 62, 96, 104, 127, 70, 144
Offset: 1
Examples
The divisors of 10 are 1, 2, 5, and 10. 10/1 == 0 (mod 5) and 10/2 == 0 (mod 5). Hence, a(10) = 5 + 10 = 15.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[p == 5, 5^e, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
-
PARI
a(n)=sumdiv(n, d, if(n/d%5, d, 0)); \\ Andrew Howroyd, Jul 20 2018
Formula
G.f.: Sum_{k>=1} k*x^k*(1 + x^k + x^(2*k) + x^(3*k))/(1 - x^(5*k)). - Ilya Gutkovskiy, Sep 12 2019
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(5^e) = 5^e and a(p^e) = (p^(e+1)-1)/(p-1) if p != 5.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/25 = 0.789568... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/5^s). - Amiram Eldar, Dec 30 2022
Extensions
Keyword:mult added by Andrew Howroyd, Jul 20 2018