cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A109064 Expansion of eta(q)^5 / eta(q^5) in powers of q.

Original entry on oeis.org

1, -5, 5, 10, -15, -5, -10, 30, 25, -35, 5, -60, 30, 60, -30, 10, -55, 80, 35, -100, -15, -60, 60, 110, -50, -5, -60, 100, 90, -150, -10, -160, 105, 120, -80, 30, -105, 180, 100, -120, 25, -210, 60, 210, -180, -35, -110, 230, 110, -215, 5, -160, 180, 260
Offset: 0

Views

Author

Michael Somos, Jun 17 2005

Keywords

Comments

Number 12 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 5*q + 5*q^2 + 10*q^3 - 15*q^4 - 5*q^5 - 10*q^6 + 30*q^7 + 25*q^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(5), 2), 54); A[1] - 5*A[2] + 5*A[3]; /* Michael Somos, May 19 2015 */
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d, 5)=0, -4, -5), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 07 2017
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^5 / QPochhammer[ q^5], {q, 0, n}]; (* Michael Somos, May 19 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -5 DivisorSum[ n, # KroneckerSymbol[ 5, #] &]]; (* Michael Somos, May 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^5 / eta(x^5 + A), n))};
    
  • PARI
    {a(n) = if( n<1, n==0, -5 * sumdiv(n, d, d * kronecker(5, d)))}; /* Michael Somos, May 19 2015 */
    

Formula

Euler transform of period 5 sequence [ -5, -5, -5, -5, -4, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 2 * u*v*w + u^2*w - 4 * u*w^2.
a(n) = -5 * b(n) where b() is multiplicative with a(0) = 1, b(p^e) = 1 if p=5, b(p^e) = b(p) * b(p^(e-1)) - Kronecker(5, p) * p * b(p^(e-2)) otherwise. - Michael Somos, May 19 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 5^(5/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A053723. - Michael Somos, May 19 2015
G.f.: Product_{k>0} (1 - x^k)^5 / (1 - x^(5*k)).
a(n) = -5 * A109091(n), unless n=0. a(n) = (-1)^n * A138506(n). a(5*n) = a(n).
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A285896(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(3*sqrt(5)) = 1.471273... . - Amiram Eldar, Jan 29 2024

A078708 Sum of divisors d of n such that n/d is not congruent to 0 mod 3.

Original entry on oeis.org

1, 3, 3, 7, 6, 9, 8, 15, 9, 18, 12, 21, 14, 24, 18, 31, 18, 27, 20, 42, 24, 36, 24, 45, 31, 42, 27, 56, 30, 54, 32, 63, 36, 54, 48, 63, 38, 60, 42, 90, 42, 72, 44, 84, 54, 72, 48, 93, 57, 93, 54, 98, 54, 81, 72, 120, 60, 90, 60, 126, 62, 96, 72, 127, 84, 108, 68, 126, 72, 144
Offset: 1

Views

Author

Vladeta Jovovic, Dec 18 2002

Keywords

Crossrefs

Cf. A002131 (k=2), this sequence (k=3), A285895 (k=4), A285896 (k=5).

Programs

  • Mathematica
    f[p_, e_] := If[p == 3, 3^e, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
  • PARI
    for(n=1,70,d=divisors(n); s=0; for(j=1,matsize(d)[2],if((n/d[j])%3>0,s=s+d[j])); print1(s,","))
    
  • PARI
    a(n)=sumdiv(n,d,if((n/d)%3,1,0)*d)

Formula

G.f.: Sum_{k>0} x^k*(1+x^k)^2*(1+x^(2*k))/(1-x^(3*k))^2.
a(n) = (A000203(3*n)-A000203(n))/3. - Vladeta Jovovic, Dec 22 2003
G.f.: Sum_{k>=1} k*x^k*(1 + x^k)/(1 - x^(3*k)). - Ilya Gutkovskiy, Sep 13 2019
From R. J. Mathar, May 25 2020: (Start)
a(n) = A326399(n) + A326400(n).
a(n) = A000203(n) - A000203(n/3), where A000203(.) = 0 for non-integer arguments. (End)
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(3^e) = 3^e and a(p^e) = (p^(e+1)-1)/(p-1) if p != 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/27 = 0.731081... (A346933). (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/3^s). - Amiram Eldar, Dec 30 2022

Extensions

Extended by Klaus Brockhaus and Benoit Cloitre, Dec 20 2002

A277212 Expansion of Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5 in powers of x.

Original entry on oeis.org

1, 5, 20, 65, 190, 505, 1260, 2970, 6700, 14535, 30520, 62235, 123720, 240340, 457380, 854190, 1568230, 2834120, 5048140, 8871450, 15396690, 26410860, 44811440, 75254240, 125162100, 206275505, 337032360, 546183425, 878270360, 1401857550, 2221862260
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Comments

In general, for fixed m > 1, if g.f. = Product_{k>=1} (1 - x^(m*k))/(1 - x^k)^m, then a(n, m) ~ exp(Pi*sqrt(2*n*(m-1/m)/3)) * (m^2 - 1)^(m/4) / (2^(3*m/4 + 1/2) * 3^(m/4) * m^(m/4 + 1/2) * n^(m/4 + 1/2)). - Vaclav Kotesovec, Nov 10 2016

Examples

			G.f.: 1 + 5*x + 20*x^2 + 65*x^3 + 190*x^4 + 505*x^5 + 1260*x^6 + ...
		

Crossrefs

Cf. Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), A273845 (k=3), A274327 (k=4), this sequence (k=5), A160539 (k=7).
Cf. A109064.

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    S:= series(mul((1-x^(5*n))/(1-x^n)^5,n=1..N),x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Nov 09 2016
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
    (QPochhammer[x^5, x^5]/QPochhammer[x, x]^5 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(5*k))/(1-x^k)^5, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
    
  • PARI
    x='x+O('x^66); Vec(eta(x^5)/eta(x)^5) \\ Joerg Arndt, Nov 27 2016

Formula

G.f.: Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5.
a(n) ~ exp(4*Pi*sqrt(n/5)) / (sqrt(2) * 5^(7/4) * n^(7/4)). - Vaclav Kotesovec, Nov 10 2016
a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A285896(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017

A285895 Sum of divisors d of n such that n/d is not congruent to 0 mod 4.

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 13, 18, 12, 24, 14, 24, 24, 24, 18, 39, 20, 36, 32, 36, 24, 48, 31, 42, 40, 48, 30, 72, 32, 48, 48, 54, 48, 78, 38, 60, 56, 72, 42, 96, 44, 72, 78, 72, 48, 96, 57, 93, 72, 84, 54, 120, 72, 96, 80, 90, 60, 144, 62, 96, 104, 96, 84, 144, 68
Offset: 1

Views

Author

Seiichi Manyama, Apr 28 2017

Keywords

Examples

			The divisors of 8 are 1, 2, 4, and 8. 8/1 == 0 (mod 4) and 8/2 == 0 (mod 4). Hence, a(8) = 4 + 8 = 12.
		

Crossrefs

Cf. A002131 (k=2), A078708 (k=3), this sequence (k=4), A285896 (k=5).

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 3*2^(e-1), (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
  • PARI
    a(n)=sumdiv(n, d, if(n/d%4, d, 0)); \\ Andrew Howroyd, Jul 20 2018

Formula

G.f.: Sum_{k>=1} k*x^k*(1 + x^k + x^(2*k))/(1 - x^(4*k)). - Ilya Gutkovskiy, Sep 12 2019
a(n) = A050460(n) + A002131(n/2) + A050464(n), where A002131(.)=0 for non-integer argument. - R. J. Mathar, May 25 2020
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(2^e) = 3*2^(e-1) and a(p^e) = (p^(e+1)-1)/(p-1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 5*Pi^2/64 = 0.7710628... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/4^s). - Amiram Eldar, Dec 30 2022
Showing 1-4 of 4 results.