cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286184 Number of connected induced (non-null) subgraphs of the helm graph with 2n+1 nodes.

Original entry on oeis.org

6, 19, 56, 157, 430, 1171, 3204, 8857, 24794, 70303, 201712, 584677, 1708998, 5028715, 14873180, 44160817, 131499442, 392401207, 1172747208, 3508804477, 10506490526, 31477528579, 94344505396, 282848966857, 848161024650, 2543677767631, 7629355581344
Offset: 1

Views

Author

Giovanni Resta, May 04 2017

Keywords

Crossrefs

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Magma
    [3^n + (1+n)*2^n - n: n in [1..30]]; // Vincenzo Librandi, May 21 2017
  • Mathematica
    a[n_] := Block[{g = Graph@ Flatten@ Table[{i <-> Mod[i, n] + 1, i <-> n + Mod[i, n] + 1, i <-> 2 n + 1}, {i, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[2 n + 1]}]]; Array[a, 8]
    Table[3^n + (1 + n) 2^n - n, {n, 30}] (* Vincenzo Librandi, May 21 2017 *)
    CoefficientList[Series[(6 - 35 x + 71 x^2 - 64 x^3 + 24 x^4) / ((1-3x)(1-2x)^2(1-x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 21 2017 *)
    LinearRecurrence[{9, -31, 51, -40, 12}, {6, 19, 56, 157, 430}, 20] (* Eric W. Weisstein, May 28 2017 *)

Formula

a(n) = 3^n + (1 + n)*2^n - n.
a(n) = 9*a(n-1) - 31*a(n-2) + 51*a(n-3) - 40*a(n-4) + 12*a(n-5). - Eric W. Weisstein, May 28 2017
G.f.: x*(6 - 35*x + 71*x^2 - 64*x^3 + 24*x^4)/((1 - 3*x)*(1 - 2*x)^2*(1 - x)^2). - Vincenzo Librandi, May 21 2017
E.g.f.: exp(3*x) - x*exp(x) + exp(2*x)*(1 + 2*x) - 2. - Stefano Spezia, Aug 25 2022

Extensions

a(17)-a(27) from Andrew Howroyd, May 21 2017