cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286717 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial (A049310) in the open interval (-phi, +phi), with the golden section phi = (1 + sqrt(5))/2.

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 14, 15, 16, 17, 18, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 23, 24, 25, 26, 27, 26, 27, 28, 29, 30, 29, 30, 31, 32, 33, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 38, 39, 40, 41, 42
Offset: 0

Views

Author

Wolfdieter Lang, May 13 2017

Keywords

Comments

See a May 06 2017 comment on A049310 where these problems are considered which originated in a conjecture by Michel Lagneau (see A008611) on Fibonacci polynomials.

Examples

			a(4) = 2: S(4, x) = 1+x^4-3*x^2, and only two of the four zeros -phi, -1/phi, +1/phi, phi are in the open interval (-phi, +phi), the other two are at the borders.
		

Crossrefs

Cf. A008611(n-1) (1), A285869 (sqrt(2)), A285872 (sqrt(3)).

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)))); // G. C. Greubel, Mar 08 2018
  • Mathematica
    CoefficientList[Series[x*(1+x+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)), {x, 0, 50}], x] (* G. C. Greubel, Mar 08 2018 *)
    LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,3,2,3},80] (* Harvey P. Dale, Aug 20 2020 *)
  • PARI
    concat(0, Vec(x*(1 + x + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ Colin Barker, May 18 2017
    

Formula

a(n) = 2*b(n) if n is even and 1 + 2*b(n) if n is odd with b(n) = floor(n/2) - floor((n+1)/6) = A286716(n). See the g.f. for {b(n)}_{n>=0} there.
From Colin Barker, May 18 2017: (Start)
G.f.: x*(1 + x + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6) for n>5.
(End)