A344828
a(n) is the smallest b > 1 such that prime(n), prime(n+1), prime(n+2) and prime(n+3) are all base-b Wieferich primes.
Original entry on oeis.org
557, 1207, 1451, 13543, 24675, 39016, 217682, 165407, 1357748, 399254, 1146590, 325346, 1895206, 3365181, 4674177, 21251205, 40698745, 6795147, 36463448, 12717474, 54383927, 7411274, 35989426, 101112784, 86045167, 13128506, 276293632, 169093089, 223680564, 137073637
Offset: 1
-
a(n) = my(v=[prime(n)]); while(#v < 4, v=concat(v, nextprime(v[#v]+1))); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b)))))
A344829
a(n) is the smallest b > 1 such that prime(n), prime(n+1), prime(n+2), prime(n+3) and prime(n+4) are all base-b Wieferich primes.
Original entry on oeis.org
19601, 54568, 13543, 296449, 3414284, 14380864, 3727271, 7916603, 65097619, 13793462, 152541840, 30495845, 91779237, 183068599, 558175167, 40698745, 825287029, 2151529020, 6271678163, 1266687934, 3149182509, 989067909, 10785363668, 18739432977, 4877709531, 24531035970, 11683733786, 52383593584
Offset: 1
-
a(n) = my(v=[prime(n)]); while(#v < 5, v=concat(v, nextprime(v[#v]+1))); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b)))))
A344830
a(n) is the smallest b > 1 such that prime(n), prime(n+1), prime(n+2), prime(n+3), prime(n+4) and prime(n+5) are all base-b Wieferich primes.
Original entry on oeis.org
132857, 2006776, 296449, 17134811, 36763941, 34998229, 31239565, 968576295, 1027038511, 287811239, 15022368222, 33452659960, 19477999997, 132892045949, 47341045210, 32176849766, 106967760951, 303459122992, 20216391690, 1411108384416, 219517083156, 361244580521, 455588981749
Offset: 1
-
a(n) = my(v=[prime(n)]); while(#v < 6, v=concat(v, nextprime(v[#v]+1))); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b)))))
A344831
a(n) is the smallest b > 1 such that prime(n), prime(n+1), prime(n+2), prime(n+3), prime(n+4), prime(n+5) and prime(n+6) are all base-b Wieferich primes.
Original entry on oeis.org
4486949, 20950343, 23250274, 741652533, 710808570, 2380570527, 4967352848, 39489360341, 6143373023, 64470545267, 627069771908, 407165268367, 676579634125, 676579634125, 2923957743077, 369072416795, 5110842013966, 19645397150616, 16037329738682, 5867065121893, 31015370285102
Offset: 1
-
a(n) = my(v=[prime(n)]); while(#v < 7, v=concat(v, nextprime(v[#v]+1))); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b)))))
A344832
a(n) is the smallest b > 1 such that prime(n), prime(n+1), prime(n+2), prime(n+3), prime(n+4), prime(n+5), prime(n+6) and prime(n+7) are all base-b Wieferich primes.
Original entry on oeis.org
126664001, 230695118, 882345432, 12106746963, 93732236423, 66888229817, 84391291750, 3685694924698, 4506100208066, 1058174730735, 3827951700972, 58674393094169, 676579634125, 83450880181400, 100819901293157, 365919682326848, 695001153578920, 1046021079620904, 2989564836636529, 3724954519064878
Offset: 1
-
a(n) = my(v=[prime(n)]); while(#v < 8, v=concat(v, nextprime(v[#v]+1))); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b)))))
A344827
a(n) is the smallest b > 1 such that prime(n), prime(n+1) and prime(n+2) are all base-b Wieferich primes.
Original entry on oeis.org
449, 226, 1207, 606, 3469, 653, 5649, 26645, 7805, 6154, 36088, 14368, 49662, 66565, 153463, 40667, 760637, 31871, 265418, 411467, 484205, 148989, 688285, 796095, 1920186, 747071, 3516680, 569812, 905979, 3193580, 3303343, 1967646, 1728157, 4436267, 912246
Offset: 1
-
a(n) = my(v=[prime(n)]); while(#v < 3, v=concat(v, nextprime(v[#v]+1))); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b)))))
A258787
Triangle read by rows: T(n, k) = smallest base b > 1 such that p = prime(n) is the k-th base-b Wieferich prime for k = 1, 2, 3, ..., n.
Original entry on oeis.org
5, 8, 17, 7, 26, 449, 30, 18, 197, 557, 3, 9, 118, 1207, 19601, 22, 146, 19, 361, 8201, 132857, 38, 40, 224, 249, 4625, 296449, 4486949, 54, 28, 68, 99, 4033, 4625, 296449, 126664001, 42, 130, 28, 118, 557, 8201, 997757, 24800401, 2363321449, 14, 41, 374, 1745, 901, 46826, 217682, 9312157, 758427193, 5229752849
Offset: 1
T(4, 3) = 197, because 197 is the smallest base b such that p = prime(4) = 7 is the 3rd base-b Wieferich prime.
Triangle T(n, k) starts:
5;
8, 17;
7, 26, 449;
30, 18, 197, 557;
3, 9, 118, 1207, 19601;
22, 146, 19, 361, 8201, 132857;
38, 40, 224, 249, 4625, 296449, 4486949;
54, 28, 68, 99, 4033, 4625, 296449, 126664001;
42, 130, 28, 118, 557, 8201, 997757, 24800401, 2363321449;
-
nextwiefbase(n, a) = a++; while(Mod(a, n^2)^(n-1)!=1, a++); a
wiefrank(n, a) = i=0; forprime(p=1, n, if(Mod(a, p^2)^(p-1)==1, i++)); i
trianglerows(n) = i=1; while(i <= n, p=prime(i); for(k=1, i, b=2; while(wiefrank(p, b)!=k, b=nextwiefbase(p, b)); print1(b, ", ")); print(""); i++)
trianglerows(9) \\ print first nine rows of the triangle
Showing 1-7 of 7 results.
Comments