cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286841 One of the two successive approximations up to 13^n for 13-adic integer sqrt(-1). Here the 8 (mod 13) case (except for n=0).

Original entry on oeis.org

0, 8, 99, 1958, 28322, 228249, 2827300, 55922199, 808904403, 9781942334, 52199939826, 603633907222, 11356596271444, 11356596271444, 1828607235824962, 37264994707118563, 651495710876207647, 5974828584341646375, 49226908181248336040
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2017

Keywords

Crossrefs

The two successive approximations up to p^n for p-adic integer sqrt(-1): A048898 and A048899 (p=5), A286840 and this sequence (p=13), A286877 and A286878 (p=17).

Programs

  • Mathematica
    {0}~Join~Table[#&@@Select[PowerModList[-1, 1/2, 13^k], Mod[#, 13] == 8 &], {k, 18}] (* Giorgos Kalogeropoulos, Oct 22 2022 *)
  • PARI
    a(n) = if (n, 13^n - truncate(sqrt(-1+O(13^n))), 0); \\ Michel Marcus, Aug 04 2017
  • Python
    def A(k, m, n):
        ary=[0]
        a, mod = k, m
        for i in range(n):
              b=a%mod
              ary.append(b)
              a=b**m
              mod*=m
        return ary
    def a286841(n):
        return A(8, 13, n)
    print(a286841(100)) # Indranil Ghosh, Aug 03 2017, after Ruby
    
  • Ruby
    def A(k, m, n)
      ary = [0]
      a, mod = k, m
      n.times{
        b = a % mod
        ary << b
        a = b ** m
        mod *= m
      }
      ary
    end
    def A286841(n)
      A(8, 13, n)
    end
    p A286841(100)
    

Formula

If n > 0, a(n) = 13^n - A286840(n).
a(0) = 0 and a(1) = 8, a(n) = a(n-1) + 4 * (a(n-1)^2 + 1) mod 13^n for n > 1.
a(n) == L(13^n,8) (mod 13^n) == (4 + sqrt(17))^(13^n) + (4 - sqrt(17))^(13^n) (mod 13^n), where L(n,x) denotes the n-th Lucas polynomial of A114525. - Peter Bala, Nov 20 2022