cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A286847 Array read by antidiagonals: T(m,n) = number of minimal dominating sets in the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 2, 6, 2, 4, 7, 7, 4, 4, 18, 16, 18, 4, 7, 39, 53, 53, 39, 7, 9, 75, 154, 306, 154, 75, 9, 13, 155, 436, 1167, 1167, 436, 155, 13, 18, 310, 1268, 4939, 6958, 4939, 1268, 310, 18, 25, 638, 3660, 21313, 40931, 40931, 21313, 3660, 638, 25
Offset: 1

Views

Author

Andrew Howroyd, Aug 01 2017

Keywords

Examples

			Table begins:
===============================================================
m\n|  1   2    3     4       5        6         7          8
---|-----------------------------------------------------------
1  |  1   2    2     4       4        7         9         13...
2  |  2   6    7    18      39       75       155        310...
3  |  2   7   16    53     154      436      1268       3660...
4  |  4  18   53   306    1167     4939     21313      88161...
5  |  4  39  154  1167    6958    40931    254754    1519544...
6  |  7  75  436  4939   40931   349178   3118754   26797630...
7  |  9 155 1268 21313  254754  3118754  40307167  497709474...
8  | 13 310 3660 88161 1519544 26797630 497709474 8863408138...
...
		

Crossrefs

Rows 1-3 are A253412, A290379, A286848.
Main diagonal is A290382.
Cf. A218354 (dominating sets), A089934 (independent), A286868 (irredundant).
Cf. A286849 (king graph).

A286870 Array read by antidiagonals: T(m,n) = number of irredundant sets in the m X n king graph.

Original entry on oeis.org

2, 3, 3, 5, 5, 5, 9, 11, 11, 9, 15, 25, 43, 25, 15, 26, 51, 133, 133, 51, 26, 44, 113, 463, 647, 463, 113, 44, 76, 235, 1493, 2945, 2945, 1493, 235, 76, 130, 521, 5011, 14217, 22049, 14217, 5011, 521, 130, 223, 1107, 16659, 65627, 147672, 147672, 65627, 16659, 1107, 223
Offset: 1

Views

Author

Andrew Howroyd, Aug 02 2017

Keywords

Examples

			Array begins:
====================================================================
m\n|  1   2     3      4       5         6          7           8
---|----------------------------------------------------------------
1  |  2   3     5      9      15        26         44          76...
2  |  3   5    11     25      51       113        235         521...
3  |  5  11    43    133     463      1493       5011       16659...
4  |  9  25   133    647    2945     14217      65627      322163...
5  | 15  51   463   2945   22049    147672    1043127     7365740...
6  | 26 113  1493  14217  147672   1455385   14656628   151865727...
7  | 44 235  5011  65627 1043127  14656628  218691097  3287831848...
8  | 76 521 16659 322163 7365740 151865727 3287831848 72877697369...
...
		

Crossrefs

Row 1 is A286887.
Main diagonal is A286871.
Cf. A218663 (dominating sets), A286849 (minimal dominating sets).
Cf. A286868 (grid graph).

A286887 Number of irredundant sets in the path graph P_n.

Original entry on oeis.org

2, 3, 5, 9, 15, 26, 44, 76, 130, 223, 382, 655, 1123, 1925, 3300, 5657, 9698, 16625, 28500, 48857, 83755, 143580, 246137, 421949, 723341, 1240013, 2125736, 3644118, 6247058, 10709240, 18358693, 31472038, 53952053, 92489213, 158552901, 271804912, 465951173
Offset: 1

Views

Author

Andrew Howroyd, Aug 02 2017

Keywords

Comments

Equivalently, the number of binary words of length n that don't start or end with 11 (the outside 1 is redundant) and don't contain 111, 1101 or 1011 (the middle 1 is redundant).

Examples

			Case n=5: irredundant words are {00000, 00001, 00010, 00100, 01000, 10000, 00110, 01100, 10001, 00101, 01010, 10100, 01001, 10010, 10101}, so a(5)=15.
		

Crossrefs

Row 1 of A286868 and A286870.

Programs

  • Mathematica
    RootSum[1 - #^2 - #^4 - #^5 + #^6 &, 3191 #^n + 4752 #^(1 + n) - 4234 #^(2 + n) + 11985 #^(3 + n) - 2369 #^(4 + n) + 3536 #^(5 + n) &]/89653 (* Eric W. Weisstein, Aug 04 2017 *)
    LinearRecurrence[{1, 1, 0, 1, 0, -1}, {2, 3, 5, 9, 15, 26}, 20] (* Eric W. Weisstein, Aug 04 2017 *)
    CoefficientList[Series[(2 + x + x^3 - x^4 - x^5)/(1 - x - x^2 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 04 2017 *)
  • PARI
    Vec((1 + x)*(2 - x + x^2 - x^4)/(1 - x - x^2 - x^4 + x^6) + O(x^40))

Formula

a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6) for n > 6.
G.f.: x*(1 + x)*(2 - x + x^2 - x^4)/(1 - x - x^2 - x^4 + x^6).

A286869 Number of irredundant sets in the grid graph P_n X P_n.

Original entry on oeis.org

2, 11, 113, 4481, 425926, 116003176, 84850904785, 169727130490809, 923777353698065520, 13700760654444668547510
Offset: 1

Views

Author

Andrew Howroyd, Aug 02 2017

Keywords

Crossrefs

Main diagonal of A286868.
Cf. A286871 (king graph).

Extensions

a(10) from Christian Sievers, Nov 23 2023

A291439 Array read by antidiagonals: T(m,n) = number of maximal irredundant sets in the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 2, 6, 2, 4, 9, 9, 4, 6, 18, 32, 18, 6, 8, 54, 103, 103, 54, 8, 13, 99, 383, 590, 383, 99, 13, 17, 216, 1280, 2807, 2807, 1280, 216, 17, 27, 512, 4247, 13138, 21555, 13138, 4247, 512, 27, 40, 1079, 14354, 67564, 150063, 150063, 67564, 14354, 1079, 40
Offset: 1

Views

Author

Andrew Howroyd, Aug 23 2017

Keywords

Examples

			Array begins:
=================================================
m\n|  1   2    3     4       5       6       7
---|---------------------------------------------
1  |  1   2    2     4       6       8      13...
2  |  2   6    9    18      54      99     216...
3  |  2   9   32   103     383    1280    4247...
4  |  4  18  103   590    2807   13138   67564...
5  |  6  54  383  2807   21555  150063 1122252...
6  |  8  99 1280 13138  150063 1598353
7  | 13 216 4247 67564 1122252
...
		

Crossrefs

Rows 1-2 are A291055, A291100.
Main diagonal is A290790.

A290513 Number of irredundant sets in the n-ladder graph.

Original entry on oeis.org

3, 11, 26, 79, 224, 640, 1828, 5225, 14928, 42654, 121873, 348232, 995003, 2843014, 8123337, 23210809, 66320216, 189496620, 541448364, 1547079580, 4420468031, 12630596045, 36089381477, 103118131368, 294639269914, 841872308017, 2405480380385, 6873175192304
Offset: 1

Views

Author

Eric W. Weisstein, Aug 04 2017

Keywords

Comments

Row 2 of A286868.

Crossrefs

Cf. A286868 (irredundant sets in m X n grid graph).

Programs

  • Mathematica
    Table[RootSum[2 + 2 # + 3 #^2 + 4 #^3 + 4 #^4 + 5 #^5 + 6 #^6 + 2 #^7 - 5 #^8 - 3 #^9 - #^10 - 2 #^11 + #^12 &, -105577159431355949 #^n - 389671420034091247 #^(n + 1) + 29241021604101932 #^(n + 2) + 551171239538727862 #^(n + 3) - 835076245333578054 #^(n + 4) - 823168743731791895 #^(n + 5) + 1288188291747539683 #^(n + 6) + 114497498217658607 #^(n + 7) - 529545500369064866 #^(n + 8) + 763912087212707104 #^(n + 9) - 593709228550713556 #^(n + 10) + 130400048784652699 #^(n + 11) &]/2485579507903393779, {n, 20}] (* Eric W. Weisstein, Aug 05 2017 *)
    LinearRecurrence[{2, 1, 3, 5, -2, -6, -5, -4, -4, -3, -2, -2}, {3, 11, 26, 79, 224, 640, 1828, 5225, 14928, 42654, 121873, 348232}, 20] (* Eric W. Weisstein, Aug 05 2017 *)
    CoefficientList[Series[(3 + 5 x + x^2 + 7 x^3 - 8 x^4 - 14 x^5 - 3 x^6 - 5 x^7 - 9 x^8 - 3 x^9 - 2 x^10 - 2 x^11)/(1 - 2 x - x^2 - 3 x^3 - 5 x^4 + 2 x^5 + 6 x^6 + 5 x^7 + 4 x^8 + 4 x^9 + 3 x^10 + 2 x^11 + 2 x^12), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 05 2017 *)
  • PARI
    Vec((3+5*x+x^2+7*x^3-8*x^4-14*x^5-3*x^6-5*x^7-9*x^8-3*x^9-2*x^10-2*x^11)/(1-2*x-x^2-3*x^3-5*x^4+2*x^5+6*x^6+5*x^7+4*x^8+4*x^9+3*x^10+2*x^11+2*x^12)+O(x^30)) \\ Andrew Howroyd, Aug 04 2017

Formula

From Andrew Howroyd, Aug 04 2017: (Start)
a(n) = 2*a(n-1) + a(n-2) + 3*a(n-3) + 5*a(n-4) - 2*a(n-5) - 6*a(n-6) - 5*a(n-7) - 4*a(n-8) - 4*a(n-9) - 3*a(n-10) - 2*a(n-11) - 2*a(n-12).
G.f.: x*(3 + 5*x + x^2 + 7*x^3 - 8*x^4 - 14*x^5 - 3*x^6 - 5*x^7 - 9*x^8 - 3*x^9 - 2*x^10 - 2*x^11) / (1 - 2*x - x^2 - 3*x^3 - 5*x^4 + 2*x^5 + 6*x^6 + 5*x^7 + 4*x^8 + 4*x^9 + 3*x^10 + 2*x^11 + 2*x^12).
(End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 04 2017
Showing 1-6 of 6 results.