cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A286849 Array read by antidiagonals: T(m,n) = number of minimal dominating sets in the n X m king graph.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 6, 6, 4, 4, 16, 12, 16, 4, 7, 20, 36, 36, 20, 7, 9, 52, 64, 256, 64, 52, 9, 13, 80, 204, 400, 400, 204, 80, 13, 18, 176, 446, 2704, 971, 2704, 446, 176, 18, 25, 296, 1184, 6400, 6486, 6486, 6400, 1184, 296, 25
Offset: 1

Views

Author

Andrew Howroyd, Aug 01 2017

Keywords

Examples

			Array begins:
===========================================================
m\n|  1   2    3     4      5       6        7         8
---|-------------------------------------------------------
1  |  1   2    2     4      4       7        9        13...
2  |  2   4    6    16     20      52       80       176...
3  |  2   6   12    36     64     204      446      1184...
4  |  4  16   36   256    400    2704     6400     30976...
5  |  4  20   64   400    971    6486    22177    112317...
6  |  7  52  204  2704   6486   85405   351503   3082745...
7  |  9  80  446  6400  22177  351503  1997448  21587536...
8  | 13 176 1184 30976 112317 3082745 21587536 360584008...
...
		

Crossrefs

Rows 1-2 are A253413, A286850.
Main diagonal is A286881.
Cf. A218663 (dominating sets), A245013 (independent), A286870 (irredundant).
Cf. A286847 (grid graph).

A286868 Array read by antidiagonals: T(m,n) = number of irredundant sets in the grid graph P_m X P_n.

Original entry on oeis.org

2, 3, 3, 5, 11, 5, 9, 26, 26, 9, 15, 79, 113, 79, 15, 26, 224, 548, 548, 224, 26, 44, 640, 2513, 4481, 2513, 640, 44, 76, 1828, 11826, 34049, 34049, 11826, 1828, 76, 130, 5225, 55136, 265227, 425926, 265227, 55136, 5225, 130
Offset: 1

Views

Author

Andrew Howroyd, Aug 02 2017

Keywords

Examples

			Array begins:
=============================================================
m\n|  1    2     3       4        5          6           7
---|---------------------------------------------------------
1  |  2    3     5       9       15         26          44...
2  |  3   11    26      79      224        640        1828...
3  |  5   26   113     548     2513      11826       55136...
4  |  9   79   548    4481    34049     265227     2052725...
5  | 15  224  2513   34049   425926    5467052    69724154...
6  | 26  640 11826  265227  5467052  116003176  2441933224...
7  | 44 1828 55136 2052725 69724154 2441933224 84850904785...
...
		

Crossrefs

Row 1 is A286887.
Main diagonal is A286869.
Cf. A286847 (minimal dominating sets).
Cf. A286870 (king graph).

A286887 Number of irredundant sets in the path graph P_n.

Original entry on oeis.org

2, 3, 5, 9, 15, 26, 44, 76, 130, 223, 382, 655, 1123, 1925, 3300, 5657, 9698, 16625, 28500, 48857, 83755, 143580, 246137, 421949, 723341, 1240013, 2125736, 3644118, 6247058, 10709240, 18358693, 31472038, 53952053, 92489213, 158552901, 271804912, 465951173
Offset: 1

Views

Author

Andrew Howroyd, Aug 02 2017

Keywords

Comments

Equivalently, the number of binary words of length n that don't start or end with 11 (the outside 1 is redundant) and don't contain 111, 1101 or 1011 (the middle 1 is redundant).

Examples

			Case n=5: irredundant words are {00000, 00001, 00010, 00100, 01000, 10000, 00110, 01100, 10001, 00101, 01010, 10100, 01001, 10010, 10101}, so a(5)=15.
		

Crossrefs

Row 1 of A286868 and A286870.

Programs

  • Mathematica
    RootSum[1 - #^2 - #^4 - #^5 + #^6 &, 3191 #^n + 4752 #^(1 + n) - 4234 #^(2 + n) + 11985 #^(3 + n) - 2369 #^(4 + n) + 3536 #^(5 + n) &]/89653 (* Eric W. Weisstein, Aug 04 2017 *)
    LinearRecurrence[{1, 1, 0, 1, 0, -1}, {2, 3, 5, 9, 15, 26}, 20] (* Eric W. Weisstein, Aug 04 2017 *)
    CoefficientList[Series[(2 + x + x^3 - x^4 - x^5)/(1 - x - x^2 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 04 2017 *)
  • PARI
    Vec((1 + x)*(2 - x + x^2 - x^4)/(1 - x - x^2 - x^4 + x^6) + O(x^40))

Formula

a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6) for n > 6.
G.f.: x*(1 + x)*(2 - x + x^2 - x^4)/(1 - x - x^2 - x^4 + x^6).

A286871 Number of irredundant sets in the n X n king graph.

Original entry on oeis.org

2, 5, 43, 647, 22049, 1455385, 218691097, 72877697369, 51489351108548, 76986419992442614, 244445556617038272066, 1683765308911934025295376
Offset: 1

Views

Author

Andrew Howroyd, Aug 02 2017

Keywords

Crossrefs

Main diagonal of A286870.

Programs

Extensions

a(10)-a(12) from Christian Sievers, Nov 22 2023
Showing 1-4 of 4 results.