cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286930 Integers whose double is a square and whose triple is a cube.

Original entry on oeis.org

0, 72, 4608, 52488, 294912, 1125000, 3359232, 8470728, 18874368, 38263752, 72000000, 127552392, 214990848, 347530248, 542126592, 820125000, 1207959552, 1737904968, 2448880128, 3387303432, 4608000000, 6175160712, 8163353088, 10658584008, 13759414272, 17578125000
Offset: 1

Views

Author

Michel Marcus, May 16 2017

Keywords

Examples

			From _Michael De Vlieger_, May 16 2017: (Start)
72 is a term because 2*72 = 144 = 12^2 and 3*72 = 216 = 6^3.4608 is a term because 2*4608 = 96^2 and 3*4608 = 24^3. (End)
		

Crossrefs

Cf. A001014.
Intersection of A001105 and A244728.

Programs

  • Mathematica
    Array[72 (# - 1)^6 &, 26] (* Michael De Vlieger, May 16 2017 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,72,4608,52488,294912,1125000,3359232},30] (* Harvey P. Dale, May 07 2022 *)
  • PARI
    isok(x) = issquare(2*x) && ispower(3*x, 3);
    
  • PARI
    concat(0, Vec(72*x^2*(1 + x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1 - x)^7 + O(x^30))) \\ Colin Barker, May 17 2017

Formula

a(n) = 72*(n-1)^6. - David A. Corneth, May 16 2017
O.g.f.: 72*x^2*(1 + x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1 - x)^7. - Colin Barker, May 17 2017
E.g.f.: 72*(-1 + (1 - x + x^2 + 10*x^3 + 20*x^4 + 9*x^5 + x^6)*exp(x)). - Bruno Berselli, May 17 2017

Extensions

More terms from Michael De Vlieger, May 16 2017