cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244500 Number T(n, k) of ways to place k points on an n X n X n triangular grid so that no pair of them has distance sqrt(3). Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 1, 6, 12, 8, 1, 10, 36, 55, 33, 9, 1, 15, 87, 248, 378, 339, 187, 63, 12, 1, 1, 21, 180, 820, 2190, 3606, 3716, 2340, 825, 125, 1, 28, 333, 2212, 9110, 24474, 43928, 53018, 42774, 22792, 7945, 1764, 196, 1, 36, 567, 5163, 30300, 121077, 339621
Offset: 1

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

In the following triangular grid points x have Euclidean distance sqrt(3) from point o. It is the second closest distance possible among grid points.
x
. .
. o .
x . . x
Triangle T(n, k) is irregular: 0 <= k <= max(n), where max(n), the maximal number of points that can be placed on the grid, is:
for n = 3j-2: max(n) = A000326(j) = j(3j-1)/2;
for n = 3j-1 or n = 3j: max(n) = A045943(j) = 3j(j+1)/2; j = 1,2,3,...
Empirical: (1) The number of ways to place the maximal number of points for grid sizes n = 3j are cubes of Catalan numbers, i.e., for n = 3j: T(n, max(n)) = C(j+1)^3 = A033536(j+1). (2) For n = 3j-2: T(n, max(n)) = A244506(n) = A244507^2(n). (3) For n = 3j-1: T(n, max(n)) = A000012(n) = 1 and T(n, max(n)-1) = 3j^2.
Row n is also the coefficients of the independence polynomial of the n-triangular honeycomb acute knight graph. - Eric W. Weisstein, May 21 2017

Examples

			On an 8 X 8 X 8 grid there is T(8, 18) = 1 way to place 18 points (x) so that no pair of points has the distance square root of 3.
         x
        x x
       . . .
      x . . x
     x x . x x
    . . . . . .
   x . . x . . x
  x x . x x . x x
Continuation of this pattern will give the unique maximal solution for all n = 3j-1.
Triangle T(n, k) begins:
  1,  1;
  1,  3,   3,   1;
  1,  6,  12,   8;
  1, 10,  36,  55,   33,    9;
  1, 15,  87, 248,  378,  339,  187,   63,  12,   1;
  1, 21, 180, 820, 2190, 3606, 3716, 2340, 825, 125;
First row refers to n = 1.
		

Crossrefs

Cf. A000217 (column 2), A086274 (1/3 * column 3), A244501 (column 4), A244502 (column 5), A244503 (column 6).
Cf. A287195 (length of row n). - Eric W. Weisstein, May 21 2017
Cf. A287204 (row sums). - Eric W. Weisstein, May 21 2017

A287230 Number of matchings in the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

1, 1, 8, 64, 1331, 64000, 6400075, 1404928000, 677298787768, 712186032947200, 1635557819719974912, 8209592592625295700893, 90036881979773511965369428, 2157454308508779392217680572439, 112955975573487831948842897960075264, 12921763288870998051759383983484279183072, 3229803978189426975602886931834056243712000000
Offset: 1

Views

Author

Eric W. Weisstein, May 22 2017

Keywords

Crossrefs

Extensions

a(11) from Eric W. Weisstein, Jun 25 2017
a(12)-a(14) from Andrew Howroyd, Jul 17 2017
a(15)-a(17) from Eric W. Weisstein, Sep 02 2025

A289902 Number of dominating sets in the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

1, 1, 27, 441, 9261, 421875, 47177249, 10546683057, 4466853289709, 3723323714676297, 6207276939337266129, 20676801823320497569317, 136896643642841500100918369
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2017

Keywords

Crossrefs

Extensions

a(8) from Andrew Howroyd, Jul 17 2017
a(9)-a(13) from Eric W. Weisstein, Feb 09 2024
Showing 1-3 of 3 results.