cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A244501 Number of ways to place 3 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).

Original entry on oeis.org

1, 8, 55, 248, 820, 2212, 5163, 10815, 20833, 37540, 64067, 104518, 164150, 249568, 368935, 532197, 751323, 1040560, 1416703, 1899380, 2511352, 3278828, 4231795, 5404363, 6835125, 8567532, 10650283, 13137730, 16090298, 19574920, 23665487, 28443313, 33997615
Offset: 2

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1) / (x-1)^7, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 03 2014 after Colin Barker *)
  • PARI
    Vec(-x^2*(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1)/(x-1)^7 + O(x^100)) \\ Colin Barker, Jun 29 2014

Formula

a(n) = 1/48*n^6 + 1/16*n^5 - 13/16*n^4 + 61/48*n^3 + 247/24*n^2 - 293/6*n + 6 for n >= 3.
G.f.: -x^2*(6*x^7 - 17*x^6 + 14*x^5 - 6*x^4 - 4*x^3 + 20*x^2 + x + 1) / (x-1)^7. - Colin Barker, Jun 29 2014

A244502 Number of ways to place 4 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).

Original entry on oeis.org

33, 378, 2190, 9110, 30300, 85563, 213293, 482085, 1006950, 1971185, 3655053, 6472533, 11017505, 18120840, 28919970, 44942618, 68206473, 101336700, 147703280, 211580280, 298329258, 414609113, 568614795, 770347395, 1031918240, 1367889723, 1795655703, 2335864415
Offset: 4

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.

Crossrefs

Programs

  • Maple
    A244502:=n->`if`(n=4,33,1/384*n^8 + 1/96*n^7 - 13/64*n^6 + 5/48*n^5 + 875/128*n^4 - 2543/96*n^3 - 4141/96*n^2 + 3759/8*n - 837); seq(A244502(n), n=4..30); # Wesley Ivan Hurt, Jun 30 2014
  • Mathematica
    CoefficientList[Series[(10*x^9 - 30*x^8 + 130*x^6 - 333*x^5 + 444*x^4 - 236*x^3 + 24*x^2 - 81*x - 33)/(x - 1)^9, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 30 2014 *)
  • PARI
    Vec(x^4*(10*x^9-30*x^8+130*x^6-333*x^5+444*x^4-236*x^3+24*x^2-81*x-33)/(x-1)^9 + O(x^100)) \\ Colin Barker, Jun 29 2014

Formula

a(n) = 1/384*n^8 + 1/96*n^7 - 13/64*n^6 + 5/48*n^5 + 875/128*n^4 - 2543/96*n^3 - 4141/96*n^2 + 3759/8*n - 837, for n >= 5.
G.f.: x^4*(10*x^9 - 30*x^8 + 130*x^6 - 333*x^5 + 444*x^4 - 236*x^3 + 24*x^2 - 81*x - 33) / (x - 1)^9. - Colin Barker, Jun 29 2014

A244503 Number of ways to place 5 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).

Original entry on oeis.org

9, 339, 3606, 24474, 121077, 475353, 1568712, 4524540, 11722134, 27828138, 61442460, 127616970, 251577939, 474068124, 858822579, 1502804622, 2549955858, 4209357693, 6778862319, 10675429650, 16473604089, 24953782251, 37162160802, 54484513344, 78736227726
Offset: 4

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.
All elements of the sequence are multiples of 3.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-3*(5*x^13 -15*x^12 -26*x^11 +228*x^10 -584*x^9 +706*x^8 -162*x^7 -542*x^6 +766*x^5 -924*x^4 +656*x^3 +124*x^2 +80*x +3) / (x-1)^11, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 03 2014 after Colin Barker *)

Formula

a(n) = 1/3840*n^10 + 1/768*n^9 - 13/384*n^8 - 7/384*n^7 + 1589/768*n^6 - 24619/3840*n^5 - 1561/32*n^4 + 20965/64*n^3 - 11101/240*n^2 - 85143/20*n + 9711 for n >= 7.
G.f.: -3*x^4*(5*x^13 - 15*x^12 - 26*x^11 + 228*x^10 - 584*x^9 + 706*x^8 - 162*x^7 - 542*x^6 + 766*x^5 - 924*x^4 + 656*x^3 + 124*x^2 + 80*x + 3) / (x - 1)^11. - Colin Barker, Jun 29 2014

A244506 Number of ways to place the maximal number of points that can be placed on a j X j X j triangular grid, j=3n-2, so that no pair of them has distance sqrt(3).

Original entry on oeis.org

1, 9, 196, 6084, 219024, 8450649, 338265664, 13840346025, 574510941225, 24093764931600
Offset: 1

Views

Author

Heinrich Ludwig, Jul 11 2014

Keywords

Comments

(1) All a(n) are square numbers. The sequence of their roots is A244507.
(2) On a j X j X j grid, j = 3n-2, the maximal number of points that can be placed is the pentagonal number A000326(n).
(3) On a maximally occupied grid, the following grid points "X" are always occupied (example for j = 7, for other j's expand this pattern):
X
. .
. . .
x . . X
. . . . .
. . . . . .
X . . X . . X
(4) For j X j X j grids, j = 3n, the corresponding numbers are cubes of Catalan numbers, A033536(n). For j = 3n-1, the corresponding numbers are always 1, A000012(n).

Crossrefs

Cf. A297537 (maximum independent vertex sets for n-triangular honeycomb acute knight graph).

Extensions

a(10) from Heinrich Ludwig, Aug 17 2014

A244507 Square roots of A244506.

Original entry on oeis.org

1, 3, 14, 78, 468, 2907, 18392, 117645, 757965, 4908540
Offset: 1

Views

Author

Heinrich Ludwig, Jul 11 2014

Keywords

Comments

A244506 gives the number of ways to place the maximal number of points that can be placed on a j X j X j triangular grid, j = 3n-2, so that no pair of them has distance sqrt(3). These numbers are all square numbers. A244507 gives the roots of them.

Crossrefs

Extensions

a(10) from Heinrich Ludwig, Aug 17 2014

A287195 Independence and clique covering number of the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

1, 3, 3, 5, 9, 9, 12, 18, 18, 22, 30, 30, 35, 45, 45, 51, 63, 63, 70, 84, 84, 92, 108, 108, 117, 135, 135, 145, 165, 165, 176, 198, 198, 210, 234, 234, 247, 273, 273, 287, 315, 315, 330, 360, 360, 376, 408, 408, 425, 459, 459, 477, 513, 513, 532, 570, 570
Offset: 1

Views

Author

Eric W. Weisstein, May 21 2017

Keywords

Comments

a(n) is also the length of row n in A244500.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 3, 3, 5, 9, 9, 12}, 50]
    Table[1/18 ((n + 3) (3 n + 2) - 2 (n + 3) Cos[2 n Pi/3] - 2 Sqrt[3] (n + 1) Sin[2 n Pi/3]), {n, 50}]
    Table[Piecewise[{{n (n + 3), Mod[n, 3] == 0}, {(n + 1) (n + 2), Mod[n, 3] == 1}, {(n + 1) (n + 4), Mod[n, 3] == 2}}]/6, {n, 50}]
  • PARI
    Vec(x*(1 + 2*x) / ((1 - x)^3*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Jul 15 2017

Formula

From Colin Barker, Jul 15 2017: (Start)
G.f.: x*(1 + 2*x) / ((1 - x)^3*(1 + x + x^2)^2).
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n>7. (End)
From Ridouane Oudra, Jun 23 2024: (Start)
a(n) = Sum_{i=1..n+3} (i mod 3)*floor(i/3);
a(n) = (1/2)*(n^2 + n + (n^2 - 5*n)*t -(6*n - 9)*t^2 + 9*t^3), where t = floor(n/3);
a(n) = A066377(n+1) - A092353(n). (End)
E.g.f.: exp(-x/2)*(exp(3*x/2)*(6 + 14*x + 3*x^2) - 2*(3 + x)*cos(sqrt(3)*x/2) - 2*sqrt(3)*(1 - x)*sin(sqrt(3)*x/2))/18. - Stefano Spezia, Jun 23 2024

A287204 Number of independent vertex sets and vertex covers in the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

2, 8, 27, 144, 1331, 13824, 208575, 4741632, 140608000, 5870657088, 350253538649, 28635764824584, 3270761581689147, 524882236329014264, 117025388905265182783, 36405238728128712859232, 15833111238624255435917875, 9599917578598545475054063616
Offset: 1

Views

Author

Eric W. Weisstein, May 21 2017

Keywords

Comments

Also row sums of A244500.

Crossrefs

Cf. A244500 (coefficients of independence polynomial of triangular honeycomb acute knight graphs).

Extensions

a(15)-a(18) from Andrew Howroyd, Jul 17 2017
Showing 1-7 of 7 results.