A099480 Count from 1, repeating 2*n five times.
1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 17, 18, 18, 18, 18, 18, 19, 20, 20, 20, 20, 20, 21, 22, 22, 22, 22, 22, 23, 24, 24, 24, 24, 24, 25, 26, 26, 26, 26, 26
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).
Programs
-
Magma
I:=[1,2,2,2,2,2]; [n le 6 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-2*Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 09 2015
-
Mathematica
LinearRecurrence[{2, -2, 2, -2, 2, -1}, {1, 2, 2, 2, 2, 2}, 100] (* Vincenzo Librandi, Sep 09 2015 *) Table[If[EvenQ[n],{n,n,n,n,n},n],{n,30}]//Flatten (* Harvey P. Dale, Dec 15 2020 *)
Formula
G.f.: 1/((1-x+x^2)(1-x-x^3+x^4)) = 1/(1-2x+2x^2-2x^3+2x^4-2x^5+x^6);
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6), n>5;
a(n) = -cos(Pi*2n/3+Pi/3)/6+sqrt(3)*sin(Pi*2n/3+Pi/3)/18-sqrt(3)*cos(Pi*n/3+Pi/6)/6+sin(Pi*n/3+Pi/6)/2+(n+3)/3.
a(n) = Sum_{i=0..n+1} floor((i-1)/6) - floor((i-3)/6). - Wesley Ivan Hurt, Sep 08 2015
a(n) = A287393(n+1)/2. - David Nacin, May 28 2017
Comments