cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A099479 Count, repeating 4n three times for n > 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 8, 9, 10, 11, 12, 12, 12, 13, 14, 15, 16, 16, 16, 17, 18, 19, 20, 20, 20, 21, 22, 23, 24, 24, 24, 25, 26, 27, 28, 28, 28, 29, 30, 31, 32, 32, 32, 33, 34, 35, 36, 36, 36, 37, 38, 39, 40, 40, 40, 41, 42, 43, 44, 44, 44, 45, 46, 47, 48, 48, 48, 49
Offset: 0

Views

Author

Paul Barry, Oct 18 2004

Keywords

Comments

A Chebyshev transform of A000975.
The denominator in the g.f. is 1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + x^6, a version of the Jones polynomial of the knot 9_43.
The g.f. is the image of x/((1-x)*(1-x-2x^2)) under the Chebyshev transform A(x)->(1/(1+x^2))*A(x/(1+x^2)).

Crossrefs

Cf. A099480.

Programs

  • Magma
    I:=[0,1,2,3,4,4]; [n le 6 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-2*Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 25 2013
    
  • Mathematica
    CoefficientList[Series[x (1 + x^2)/((1 - x + x^2) (1 - x - x^3 + x^4)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 25 2013 *)
    LinearRecurrence[{2,-2,2,-2,2,-1},{0,1,2,3,4,4},80] (* Harvey P. Dale, Dec 11 2014 *)
  • PARI
    x='x+O('x^50); concat([0], vec(x*(1+x^2)/((1-x+x^2)*(1-x-x^3+x^4)))) \\ G. C. Greubel, Oct 10 2017

Formula

G.f.: x*(1+x^2)/((1-x+x^2)*(1-x-x^3+x^4)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6).
a(n) = -cos(Pi*2n/3 + Pi/3)/6 - sqrt(3)*sin(Pi*2n/3 + Pi/3)/18 - sqrt(3)*cos(Pi*n/3 + Pi/6)/6 - sin(Pi*n/3 + Pi/6)/2 + 2(n+1)/3.
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*(4*2^(n-1-2k)/3 - (-1)^n/6 - 1/2).
a(n) = floor((n+2)/3) + floor((n+3)/6) + floor((n+4)/6). - Ridouane Oudra, Jan 22 2024

A287393 Domination number for knight graph on a 2 X n board.

Original entry on oeis.org

0, 2, 4, 4, 4, 4, 4, 6, 8, 8, 8, 8, 8, 10, 12, 12, 12, 12, 12, 14, 16, 16, 16, 16, 16, 18, 20, 20, 20, 20, 20, 22, 24, 24, 24, 24, 24, 26, 28, 28, 28, 28, 28, 30, 32, 32, 32, 32, 32, 34, 36, 36, 36, 36, 36, 38, 40, 40, 40, 40, 40, 42, 44, 44, 44, 44, 44, 46
Offset: 0

Views

Author

David Nacin, May 24 2017

Keywords

Comments

Minimum number of knights required to dominate a 2 X n board.

Examples

			For n=3 we need a(3)=4 knights to dominate a 2 X 3 board.
		

Crossrefs

Programs

  • Mathematica
    Table[2*(Floor[(i+4)/6]+Floor[(i+5)/6]), {i, 0, 67}]
    LinearRecurrence[{2,-2,2,-2,2,-1},{0,2,4,4,4,4},70] (* Harvey P. Dale, Jul 07 2020 *)
  • PARI
    concat(0, Vec(2*x / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)) + O(x^100))) \\ Colin Barker, May 27 2017
  • Python
    [2*((i+4)//6+(i+5)//6) for i in range(68)]
    

Formula

a(n) = 2*(floor((n+4)/6) + floor((n+5)/6)).
From Colin Barker, May 26 2017: (Start)
G.f.: 2*x / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>5.
(End)
a(n) = 2*A099480(n-1).

A129920 Expansion of -1/(1 - x + 3*x^2 - 2*x^3 + x^4 - 2*x^5 + x^6).

Original entry on oeis.org

-1, -1, 2, 3, -4, -10, 5, 29, 2, -76, -45, 178, 212, -361, -750, 565, 2282, -306, -6206, -2428, 15176, 14353, -32719, -55104, 57933, 176234, -61524, -499047, -97429, 1271400, 921652, -2887641, -3948938, 5590078, 13380187, -7828378, -39536779, 108416, 104810904
Offset: 0

Views

Author

Roger L. Bagula, Jun 05 2007

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( -1/(1-x+3*x^2-2*x^3+x^4-2*x^5+x^6) )); // G. C. Greubel, Sep 28 2024
    
  • Mathematica
    CoefficientList[Series[-1/(1-x +3*x^2 -2*x^3 +x^4 -2*x^5 +x^6), {x,0,50}], x]
  • SageMath
    def A129920_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -1/(1-x+3*x^2-2*x^3+x^4-2*x^5+x^6) ).list()
    A129920_list(50) # G. C. Greubel, Sep 28 2024

Formula

a(n) = a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6), n >= 6. - Franck Maminirina Ramaharo, Jan 08 2019

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019

A125629 Expansion of -1/(1 - x + x^2 - x^3 + x^4 + x^6).

Original entry on oeis.org

1, -1, 0, 0, 0, 1, 2, 2, 1, 0, -1, -3, -5, -5, -3, 0, 4, 9, 13, 13, 8, -1, -13, -26, -35, -34, -20, 6, 40, 74, 95, 89, 48, -26, -120, -209, -258, -232, -111, 98, 355, 587, 699, 601, 245, -342, -1040, -1641, -1887, -1545, -504, 1137, 3023, 4568, 5073, 3936, 912
Offset: 0

Views

Author

Roger L. Bagula, Jun 07 2007

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(1 - x + x^2 - x^3 + x^4 + x^6), {x, 0, 50}], x]

Formula

G.f.: 1/(x^(17/2)*f(x)), where f(x) = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2) is the Jones polynomial for the link with Dowker-Thistlethwaite notation L6a3.
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-6), n >= 6. - Franck Maminirina Ramaharo, Jan 08 2019

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019
Showing 1-4 of 4 results.