cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A099480 Count from 1, repeating 2*n five times.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 17, 18, 18, 18, 18, 18, 19, 20, 20, 20, 20, 20, 21, 22, 22, 22, 22, 22, 23, 24, 24, 24, 24, 24, 25, 26, 26, 26, 26, 26
Offset: 0

Views

Author

Paul Barry, Oct 18 2004

Keywords

Comments

Could be called the Jones sequence of the knot 9_43, since the g.f. is the reciprocal of (a parameterization of) the Jones polynomial for 9_43.
Half the domination number of the knight's graph on a 2 X (n+1) chessboard. - David Nacin, May 28 2017

Crossrefs

Programs

  • Magma
    I:=[1,2,2,2,2,2]; [n le 6 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-2*Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 09 2015
  • Mathematica
    LinearRecurrence[{2, -2, 2, -2, 2, -1}, {1, 2, 2, 2, 2, 2}, 100] (* Vincenzo Librandi, Sep 09 2015 *)
    Table[If[EvenQ[n],{n,n,n,n,n},n],{n,30}]//Flatten (* Harvey P. Dale, Dec 15 2020 *)

Formula

G.f.: 1/((1-x+x^2)(1-x-x^3+x^4)) = 1/(1-2x+2x^2-2x^3+2x^4-2x^5+x^6);
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6), n>5;
a(n) = -cos(Pi*2n/3+Pi/3)/6+sqrt(3)*sin(Pi*2n/3+Pi/3)/18-sqrt(3)*cos(Pi*n/3+Pi/6)/6+sin(Pi*n/3+Pi/6)/2+(n+3)/3.
a(n) = Sum_{i=0..n+1} floor((i-1)/6) - floor((i-3)/6). - Wesley Ivan Hurt, Sep 08 2015
a(n) = A287393(n+1)/2. - David Nacin, May 28 2017

A129920 Expansion of -1/(1 - x + 3*x^2 - 2*x^3 + x^4 - 2*x^5 + x^6).

Original entry on oeis.org

-1, -1, 2, 3, -4, -10, 5, 29, 2, -76, -45, 178, 212, -361, -750, 565, 2282, -306, -6206, -2428, 15176, 14353, -32719, -55104, 57933, 176234, -61524, -499047, -97429, 1271400, 921652, -2887641, -3948938, 5590078, 13380187, -7828378, -39536779, 108416, 104810904
Offset: 0

Views

Author

Roger L. Bagula, Jun 05 2007

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( -1/(1-x+3*x^2-2*x^3+x^4-2*x^5+x^6) )); // G. C. Greubel, Sep 28 2024
    
  • Mathematica
    CoefficientList[Series[-1/(1-x +3*x^2 -2*x^3 +x^4 -2*x^5 +x^6), {x,0,50}], x]
  • SageMath
    def A129920_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -1/(1-x+3*x^2-2*x^3+x^4-2*x^5+x^6) ).list()
    A129920_list(50) # G. C. Greubel, Sep 28 2024

Formula

a(n) = a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6), n >= 6. - Franck Maminirina Ramaharo, Jan 08 2019

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019

A125629 Expansion of -1/(1 - x + x^2 - x^3 + x^4 + x^6).

Original entry on oeis.org

1, -1, 0, 0, 0, 1, 2, 2, 1, 0, -1, -3, -5, -5, -3, 0, 4, 9, 13, 13, 8, -1, -13, -26, -35, -34, -20, 6, 40, 74, 95, 89, 48, -26, -120, -209, -258, -232, -111, 98, 355, 587, 699, 601, 245, -342, -1040, -1641, -1887, -1545, -504, 1137, 3023, 4568, 5073, 3936, 912
Offset: 0

Views

Author

Roger L. Bagula, Jun 07 2007

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(1 - x + x^2 - x^3 + x^4 + x^6), {x, 0, 50}], x]

Formula

G.f.: 1/(x^(17/2)*f(x)), where f(x) = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2) is the Jones polynomial for the link with Dowker-Thistlethwaite notation L6a3.
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-6), n >= 6. - Franck Maminirina Ramaharo, Jan 08 2019

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019
Showing 1-3 of 3 results.