cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A287216 Number A(n,k) of set partitions of [n] such that all absolute differences between least elements of consecutive blocks are <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 9, 1, 1, 1, 2, 5, 14, 23, 1, 1, 1, 2, 5, 15, 44, 66, 1, 1, 1, 2, 5, 15, 51, 152, 210, 1, 1, 1, 2, 5, 15, 52, 191, 571, 733, 1, 1, 1, 2, 5, 15, 52, 202, 780, 2317, 2781, 1, 1, 1, 2, 5, 15, 52, 203, 857, 3440, 10096, 11378, 1
Offset: 0

Views

Author

Alois P. Heinz, May 21 2017

Keywords

Examples

			A(4,0) = 1: 1234.
A(4,1) = 9: 1234, 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
A(4,2) = 14: 1234, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
A(5,1) = 23: 12345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345, 145|2|3, 14|25|3, 14|2|35, 15|24|3, 1|245|3, 1|24|35, 15|2|34, 1|25|34, 1|2|345, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Square array A(n,k) begins:
  1,   1,   1,   1,   1,   1,   1,   1, ...
  1,   1,   1,   1,   1,   1,   1,   1, ...
  1,   2,   2,   2,   2,   2,   2,   2, ...
  1,   4,   5,   5,   5,   5,   5,   5, ...
  1,   9,  14,  15,  15,  15,  15,  15, ...
  1,  23,  44,  51,  52,  52,  52,  52, ...
  1,  66, 152, 191, 202, 203, 203, 203, ...
  1, 210, 571, 780, 857, 876, 877, 877, ...
		

Crossrefs

Columns k=0-10 give: A000012, A026898(n-1) for n>0, A287252, A287253, A287254, A287255, A287256, A287257, A287258, A287259, A287260.
Main diagonal gives A000110.

Programs

  • Maple
    b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
         `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
        end:
    A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m*b[n - 1, k, m, l]];
    A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];
    Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} A287215(n,j).

A287214 Number A(n,k) of set partitions of [n] such that for each block all absolute differences between consecutive elements are <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 8, 1, 1, 1, 2, 5, 13, 16, 1, 1, 1, 2, 5, 15, 34, 32, 1, 1, 1, 2, 5, 15, 47, 89, 64, 1, 1, 1, 2, 5, 15, 52, 150, 233, 128, 1, 1, 1, 2, 5, 15, 52, 188, 481, 610, 256, 1, 1, 1, 2, 5, 15, 52, 203, 696, 1545, 1597, 512, 1
Offset: 0

Views

Author

Alois P. Heinz, May 21 2017

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.

Examples

			A(4,0) = 1: 1|2|3|4.
A(4,1) = 8: 1234, 123|4, 12|34, 12|3|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4.
A(4,2) = 13: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4.
Square array A(n,k) begins:
  1,  1,   1,   1,   1,   1,   1,   1, ...
  1,  1,   1,   1,   1,   1,   1,   1, ...
  1,  2,   2,   2,   2,   2,   2,   2, ...
  1,  4,   5,   5,   5,   5,   5,   5, ...
  1,  8,  13,  15,  15,  15,  15,  15, ...
  1, 16,  34,  47,  52,  52,  52,  52, ...
  1, 32,  89, 150, 188, 203, 203, 203, ...
  1, 64, 233, 481, 696, 825, 877, 877, ...
		

Crossrefs

Main diagonal gives A000110.

Programs

  • Maple
    b:= proc(n, k, l) option remember; `if`(n=0, 1, b(n-1, k, map(x->
          `if`(x-n>=k, [][], x), [l[], n]))+add(b(n-1, k, sort(map(x->
          `if`(x-n>=k, [][], x), subsop(j=n, l)))), j=1..nops(l)))
        end:
    A:= (n, k)-> b(n, min(k, n-1), []):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[0, , ] = 1; b[n_, k_, l_List] := b[n, k, l] = b[n - 1, k, If[# - n >= k, Nothing, #]& /@ Append[l, n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]]], {j, 1, Length[l]}];
    A[n_, k_] := b[n, Min[k, n - 1], {}];
    Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} A287213(n,j).

A287417 Number A(n,k) of set partitions of [n] such that all absolute differences between least elements of consecutive blocks and between consecutive elements within the blocks are not larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 3, 0, 1, 1, 2, 5, 4, 0, 1, 1, 2, 5, 12, 5, 0, 1, 1, 2, 5, 15, 27, 6, 0, 1, 1, 2, 5, 15, 46, 58, 7, 0, 1, 1, 2, 5, 15, 52, 139, 121, 8, 0, 1, 1, 2, 5, 15, 52, 187, 410, 248, 9, 0, 1, 1, 2, 5, 15, 52, 203, 677, 1189, 503, 10, 0
Offset: 0

Views

Author

Alois P. Heinz, May 24 2017

Keywords

Examples

			A(5,3) = 46 = 52 - 6 = A000110(5) - 6 counts all set partitions of [5] except: 1234|5, 15|234, 15|23|4, 15|24|3, 15|2|34, 15|2|3|4.
Square array A(n,k) begins:
  1, 1,   1,   1,   1,   1,   1,   1, ...
  1, 1,   1,   1,   1,   1,   1,   1, ...
  0, 2,   2,   2,   2,   2,   2,   2, ...
  0, 3,   5,   5,   5,   5,   5,   5, ...
  0, 4,  12,  15,  15,  15,  15,  15, ...
  0, 5,  27,  46,  52,  52,  52,  52, ...
  0, 6,  58, 139, 187, 203, 203, 203, ...
  0, 7, 121, 410, 677, 824, 877, 877, ...
		

Crossrefs

Main diagonal gives A000110.

Programs

  • Maple
    b:= proc(n, k, l, t) option remember; `if`(n<1, 1, `if`(t-n>k, 0,
           b(n-1, k, map(x-> `if`(x-n>=k, [][], x), [l[], n]), n)) +add(
           b(n-1, k, sort(map(x-> `if`(x-n>=k, [][], x), subsop(j=n, l))),
           `if`(t-n>k, infinity, t)), j=1..nops(l)))
        end:
    A:= (n, k)-> b(n, min(k, n-1), [], n):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, k_, l_, t_] := b[n, k, l, t] = If[n < 1, 1, If[t - n > k, 0, b[n - 1, k, If[# - n >= k, Nothing, #]& /@  Append[l, n], n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]], If[t - n > k, Infinity, t]], {j, 1, Length[l]}]];
    A[n_, k_] := b[n, Min[k, n - 1], {}, n];
    Table[A[n, d - n], {d, 0, 14}, { n, 0, d}] // Flatten (* Jean-François Alcover, May 24 2018, translated from Maple *)

Formula

A(n,k) = Sum_{j=0..k} A287416(n,j).

A287640 Number T(n,k) of set partitions of [n], where k is minimal such that for all j in [n]: j is member of block b implies b = 1 or at least one of j-1, ..., j-k is member of a block >= b-1; triangle T(n,k), n >= 0, 0 <= k <= max(floor(n/2), n-2), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 13, 1, 1, 41, 9, 1, 1, 131, 59, 11, 1, 1, 428, 344, 88, 15, 1, 1, 1429, 1906, 634, 146, 23, 1, 1, 4861, 10345, 4389, 1231, 280, 39, 1, 1, 16795, 55901, 30006, 9835, 2763, 602, 71, 1, 1, 58785, 303661, 205420, 77178, 25014, 6967, 1408, 135, 1
Offset: 0

Views

Author

Alois P. Heinz, May 28 2017

Keywords

Examples

			T(4,0) = 1: 1234.
T(4,1) = 13: 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 1: 13|2|4.
T(5,2) = 9: 124|3|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|35, 14|2|3|5, 1|24|3|5.
T(6,3) = 11: 1245|3|6, 1346|2|5, 134|26|5, 134|2|56, 134|2|5|6, 145|23|6, 145|2|36, 145|2|3|6, 14|25|3|6, 15|24|3|6, 1|245|3|6.
T(6,4) = 1: 1345|2|6.
T(7,4) = 15: 12456|3|7, 13457|2|6, 1345|27|6, 1345|2|67, 1345|2|6|7, 1456|23|7, 1456|2|37, 1456|2|3|7, 145|26|3|7, 146|25|3|7, 14|256|3|7, 156|24|3|7, 15|246|3|7, 16|245|3|7, 1|2456|3|7.
Triangle T(n,k) begins:
  1;
  1;
  1,    1;
  1,    4;
  1,   13,     1;
  1,   41,     9,    1;
  1,  131,    59,   11,    1;
  1,  428,   344,   88,   15,   1;
  1, 1429,  1906,  634,  146,  23,  1;
  1, 4861, 10345, 4389, 1231, 280, 39, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000012, A001453.
Row sums give A000110.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0 or l=[], 1, add(b(n-1,
          [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
        end:
    T:= (n, k)-> `if`(k=0, 1, b(n, [0$k])-b(n, [0$k-1])):
    seq(seq(T(n, k), k=0..max(n/2, n-2)), n=0..12);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0 || l == {}, 1, Sum[b[n-1, Append[Table[ Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
    T[n_, k_] := If[k == 0, 1, b[n, Table[0, k]] - b[n, Table[0, k - 1]]];
    Table[T[n, k], {n, 0, 12}, { k, 0, Max[n/2, n - 2]}] // Flatten (* Jean-François Alcover, May 22 2018, translated from Maple *)

Formula

T(n,k) = A287641(n,k) - A287641(n,k-1) for k>0, T(n,0) = 1.
T(n+4,n+1) = A168415(n) for n>0.

A275605 Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, j-2 is member of a block >= b-1.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 191, 773, 3336, 15207, 72697, 362447, 1876392, 10051083, 55544661, 315899245, 1845139684, 11048651523, 67719859612, 424287619507, 2714074517843, 17706680249505, 117704101959444, 796546613501759, 5483490237025393, 38372546811580251
Offset: 0

Views

Author

Benedict W. J. Irwin, Nov 14 2016

Keywords

Comments

Original name was: The 'AND' Motzkin Numbers.
This sequence consists of the place values from counting in a pattern where the digit is carried if the current place exceeds both the next place plus one and the place after that plus one. (Note that the place "after" a digit is equally described as the digit preceding it, since we write high-order digits first.)
If the "and" logical comparison is changed to "or", then that modified definition produces the Motzkin numbers A001006.
If the definition looks only at the next term, this generates the Catalan numbers A000108.
This is the case k = 2 of a class of sequences, counting sequences where the k-th term is not more than one more than the maximum of the previous k values. The case k = 1 is the Catalan numbers. The limit as k goes to infinity is the Bell numbers A000110. A similar series limiting terms to no more than one more than the minimum of the previous k values has again the Catalan numbers for k = 1, the Motzkin numbers for k = 2, and continues from there. In this case the limit is the all-ones sequence. - Franklin T. Adams-Watters, Mar 14 2017
To get all the sequences of numerals of length n, take all the numerals of length strictly less than n, and pad them on the left with zeros to length n. - Franklin T. Adams-Watters, May 26 2017

Examples

			The sequence of numerals starts 0, 1, 10, 11, 12, 100, 101, 102, 110, 111, 112, 120, 121, 122, 123.
To get the numeral following 12, we first increment the final digit: 13. But the digits before the 3 are 0 (implied) and 1, and 3 is greater than either of those by more than 1. So we set the last digit to 0, and increment the previous one: 20. Again, 2 is too large for the two implicit zeros in front of it, so we set it to 0 and increment the preceding digit, an implicit zero; so we get 100, which presents no problems.
The length 3 numerals come from the numerals less than 100: 0, 1, 10, 11, 12. Inserting leading zeros to length 3 gives 000, 001, 010, 011, 012.
The values of 1, 10, 100, 1000, etc. make up the sequence.
a(5) = 51 = 52 - 1 = A000110(5) - 1 counts all set partitions of [5] except: 134|2|5. - _Alois P. Heinz_, May 27 2017
		

Crossrefs

Column k=2 of A287641.

Programs

  • Maple
    b:= proc(n, i, j) option remember; `if`(n=0, 1,
          add(b(n-1, max(j, k), k), k=1..i+1))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 26 2017
  • Mathematica
    SIZ = 30;MAX = 100000;
    M = Table[0, {n, 1, SIZ + 2}];
    For[i = 0, i <= MAX, i++,sum = 0;For[j = 1, j <= SIZ, j++,sum += M[[j]];]
      If[sum == 1, Print[i]]M[[1]]++;
    For[j = 1, j <= SIZ, j++,If[M[[j]] > M[[j + 1]] + 1 && M[[j]] > M[[j + 2]] + 1, M[[j]] = 0; M[[j + 1]]++]]] (* Benedict W. J. Irwin, Nov 14 2016 *)
    b[n_, i_, j_] := b[n, i, j] = If[n==0, 1, Sum[b[n-1, Max[j, k], k], {k, 1, i+1} ] ];
    a[n_] := b[n, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 23 2017, after Alois P. Heinz *)

Extensions

Edited by Franklin T. Adams-Watters, May 26 2017
More terms and new name from Alois P. Heinz, May 26 2017

A287666 Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-3 is member of a block >= b-1.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 861, 3970, 19596, 102703, 567867, 3295439, 19986462, 126231946, 827759525, 5621051650, 39439867696, 285368007479, 2125566382124, 16273261632111, 127881070062521, 1030221084660031, 8498826714433335, 71721238761675612, 618573094313147709
Offset: 0

Views

Author

Alois P. Heinz, May 29 2017

Keywords

Examples

			a(6) = 202 = 203 - 1 = A000110(6) - 1 counts all set partitions of [6] except: 1345|2|6.
		

Crossrefs

Column k=3 of A287641.
Cf. A000110.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1,
          [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
        end:
    a:= n-> b(n, [0$3]):
    seq(a(n), n=0..26);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n - 1, Append[Table[Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
    a[n_] := b[n, {0, 0, 0}];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, May 27 2018, from Maple *)

Formula

a(n) = A287641(n,3).
a(n) = A000110(n) for n <= 5.

A287667 Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-4 is member of a block >= b-1.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4116, 20827, 112538, 645045, 3900512, 24769152, 164546915, 1139818861, 8209631792, 61331709492, 474221335902, 3787741281763, 31199052157724, 264605708064825, 2307562757319104, 20666169125398768, 189855243829576499
Offset: 0

Views

Author

Alois P. Heinz, May 29 2017

Keywords

Examples

			a(7) = 876 = 877 - 1 = A000110(7) - 1 counts all set partitions of [7] except: 13456|2|7.
		

Crossrefs

Column k=4 of A287641.
Cf. A000110.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1,
          [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
        end:
    a:= n-> b(n, [0$4]):
    seq(a(n), n=0..26);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n - 1, Append[Table[Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
    a[n_] := b[n, Table[0, 4]];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, May 27 2018, from Maple *)

Formula

a(n) = A287641(n,4).
a(n) = A000110(n) for n <= 6.

A287668 Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-5 is member of a block >= b-1.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4139, 21107, 115301, 670059, 4119316, 26665103, 181031235, 1284643851, 9500643629, 73037739470, 582346938182, 4805997066022, 40980051074202, 360452146946076, 3265691382361850, 30435437254066599, 291431082211368120
Offset: 0

Views

Author

Alois P. Heinz, May 29 2017

Keywords

Examples

			a(8) = 4139 = 4140 - 1 = A000110(8) - 1 counts all set partitions of [8] except: 134567|2|8.
		

Crossrefs

Column k=5 of A287641.
Cf. A000110.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1,
          [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
        end:
    a:= n-> b(n, [0$5]):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n - 1, Append[Table[Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
    a[n_] := b[n, Table[0, {5}]];
    a /@ Range[0, 24] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)

Formula

a(n) = A287641(n,5).
a(n) = A000110(n) for n <= 7.

A287669 Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-6 is member of a block >= b-1.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115903, 677026, 4190648, 27356008, 187573260, 1346289439, 10084570537, 78630320221, 636692795555, 5342949225111, 46381106554291, 415803352327861, 3843867571153341, 36592205230965683, 358266592635074429
Offset: 0

Views

Author

Alois P. Heinz, May 29 2017

Keywords

Examples

			a(9) = 21146 = 21147 - 1 = A000110(9) - 1 counts all set partitions of [9] except: 1345678|2|9.
		

Crossrefs

Column k=6 of A287641.
Cf. A000110.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1,
          [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
        end:
    a:= n-> b(n, [0$6]):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n - 1, Append[Table[Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
    a[n_] := b[n, Table[0, 6]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 27 2018, from Maple *)

Formula

a(n) = A287641(n,6).
a(n) = A000110(n) for n <= 8.

A287670 Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-7 is member of a block >= b-1.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678434, 4209827, 27578206, 189954361, 1370870811, 10334533723, 81166980407, 662588540048, 5610196619724, 49177794178940, 445536788068643, 4165402700226511, 40131393651398259, 397935154986242021
Offset: 0

Views

Author

Alois P. Heinz, May 29 2017

Keywords

Examples

			a(10) = 115974 = 115975 - 1 = A000110(10) - 1 counts all set partitions of [10] except: 13456789|2|(10).
		

Crossrefs

Column k=7 of A287641.
Cf. A000110.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1,
          [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
        end:
    a:= n-> b(n, [0$7]):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n - 1, Append[Table[Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
    a[n_] := b[n, Table[0, 7]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 27 2018, from Maple *)

Formula

a(n) = A287641(n,7).
a(n) = A000110(n) for n <= 9.
Showing 1-10 of 13 results. Next