cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A269921 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 1.

Original entry on oeis.org

1, 10, 10, 70, 167, 70, 420, 1720, 1720, 420, 2310, 14065, 24164, 14065, 2310, 12012, 100156, 256116, 256116, 100156, 12012, 60060, 649950, 2278660, 3392843, 2278660, 649950, 60060, 291720, 3944928, 17970784, 36703824, 36703824, 17970784
Offset: 2

Views

Author

Gheorghe Coserea, Mar 14 2016

Keywords

Comments

Row n contains n-1 terms.

Examples

			Triangle starts:
n\f    [1]      [2]      [3]      [4]      [5]      [6]      [7]
[2]    1;
[3]    10,      10;
[4]    70,      167,     70;
[5]    420,     1720,    1720,    420;
[6]    2310,    14065,   24164,   14065,   2310;
[7]    12012,   100156,  256116,  256116,  100156,  12012;
[8]    60060,   649950,  2278660, 3392843, 2278660, 649950,  60060;
[9]    ...
		

Crossrefs

Columns f=1-10 give: A002802 f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Row sums give A006300 (column 1 of A269919).
Cf. A006297 (row maxima).

Programs

  • Mathematica
    M = 9; G = 1; gMax[n_] := Min[Quotient[n, 2], G];
    Q = Array[0&, {M + 1, M + 1}];
    Qget[n_, g_] := If[g < 0 || g > n/2, 0, Q[[n + 1, g + 1]]];
    Qset[n_, g_, v_] := (Q[[n + 1, g + 1]] = v );
    Quadric[x_] := (Qset[0, 0, x]; For[n = 1, n <= Length[Q] - 1, n++, For[g = 0, g <= gMax[n], g++, t1 = (1 + x)*(2*n - 1)/3 * Qget[n - 1, g]; t2 = (2*n - 3)*(2*n - 2)*(2*n - 1)/12 * Qget[n - 2, g - 1]; t3 = 1/2 * Sum[ Sum[(2*k - 1) * (2*(n - k) - 1) * Qget[k - 1, i] * Qget[n - k - 1, g - i], {i, 0, g}], {k, 1, n-1}]; Qset[n, g, (t1 + t2 + t3) * 6/(n+1)]]]);
    Quadric[x];
    (List @@@ Table[Qget[n - 1 + 2*G, G] // Expand, {n, 1, M + 1 - 2*G}]) /. x -> 1 // Flatten (* Jean-François Alcover, Jun 13 2017, adapted from PARI *)
  • PARI
    N = 9; G = 1; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A006295 Number of genus 1 rooted maps with 2 faces with n vertices.

Original entry on oeis.org

10, 167, 1720, 14065, 100156, 649950, 3944928, 22764165, 126264820, 678405090, 3550829360, 18182708362, 91392185080, 452077562620, 2205359390592, 10627956019245, 50668344988068, 239250231713210, 1120028580999440, 5202779260636958, 23998704563581000, 109991785264412452
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, this sequence, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 2 of A269921, column 1 of A270406.

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (11 + 12 x + 9 Sqrt[1 - 4 x]) / (4 (4 x - 1)^4), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A006295_ser(N) = {
      my(y = A000108_ser(N+1));  y*(y-1)^3*(y^2 + 15*y - 6)/(y-2)^8;
    };
    Vec(A006295_ser(31)) \\ Gheorghe Coserea, Jun 04 2017
    
  • PARI
    my(x = 'x + O('x^60)); Vec(x*(1-sqrt(1-4*x))*(11+12*x+9*sqrt(1-4*x))/(4*(4*x-1)^4)) \\ Michel Marcus, Jun 05 2017

Formula

G.f.: x*(1-sqrt(1-4*x))*(11+12*x+9*sqrt(1-4*x))/(4*(4*x-1)^4). - Sean A. Irvine, Nov 14 2010

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A006296 Number of genus 1 rooted maps with 3 faces with n vertices.

Original entry on oeis.org

70, 1720, 24164, 256116, 2278660, 17970784, 129726760, 875029804, 5593305476, 34225196720, 201976335288, 1156128848680, 6447533938280, 35155923872640, 187959014565840, 987658610225052, 5110652802256260, 26084524995672080, 131501187454625560, 655590388845975000, 3235463376771463288, 15820770680078552000, 76708503479715247920, 369046200766330733880, 1762793459781859039080, 8364468224596427692896, 39445646133672676352560, 184956513528952419546448, 862615498961026097997392, 4003067488703222112053760, 18489846573354278755829152, 85028133934182275077421180, 389398354121840111751946628, 1776360539933013004774353872, 8073622060225813990245976280, 36567311475673299914222851832
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, this sequence, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 3 of A269921, column g=1 of A270407.

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (45 + 152 x + (25 + 8 x) Sqrt[1 - 4 x]) / (2 (1 - 4 x)^(11 / 2)), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A006296_ser(N) = {
      my(y = A000108_ser(N+1));
      -2*y*(y-1)^4*(10*y^3 + 97*y^2 - 64*y - 8)/(y-2)^11;
    };
    Vec(A006296_ser(36)) \\ Gheorghe Coserea, Jun 04 2017

Formula

G.f.: x(1-sqrt(1-4*x))(45+152*x+(25+8*x)sqrt(1-4*x))/(2(1-4*x)^(11/2)). - Sean A. Irvine, Nov 14 2010

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A287046 a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 1.

Original entry on oeis.org

12012, 649950, 17970784, 344468530, 5188948072, 65723863196, 729734918432, 7302676928666, 67173739068760, 576218752277476, 4660202610532480, 35839052357422132, 263868150558327376, 1870153808268516280, 12816868756802256832, 85256107136168684650, 552171259884681058744
Offset: 7

Views

Author

Gheorghe Coserea, Jun 04 2017

Keywords

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, this sequence, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 6 of A269921, column 1 of A270410.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 6, 1];
    Table[a[n], {n, 7, 23}] (* Jean-François Alcover, Oct 17 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A287046_ser(N) = {
      my(y = A000108_ser(N+1));
      2*y*(y-1)^7*(28457*y^6 + 179171*y^5 - 222214*y^4 - 172512*y^3 + 257232*y^2 - 59904*y - 4224)/(y-2)^20;
    };
    Vec(A287046_ser(17))

A287047 a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 1.

Original entry on oeis.org

60060, 3944928, 129726760, 2908358552, 50534154408, 729734918432, 9145847808784, 102432266545800, 1046677747672360, 9908748651241088, 87930943305742512, 738178726378902064, 5905479331377981200, 45289976937922983360, 334600965220354244896, 2391127223524518889064, 16585285393291515557928
Offset: 8

Views

Author

Gheorghe Coserea, Jun 04 2017

Keywords

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, this sequence, A287048 f=8, A288073 f=9, A288074 f=10.
Column 7 of A269921, column 1 of A270411.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 7, 1];
    Table[a[n], {n, 8, 24}] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A287047_ser(N) = {
      my(y = A000108_ser(N+1));
      -4*y*(y-1)^8*(184142*y^7 + 1083793*y^6 - 1540136*y^5 - 1481152*y^4 + 2626176*y^3 - 737232*y^2 - 184896*y + 64320)/(y-2)^23;
    };
    Vec(A287047_ser(17))

A287048 a(n) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus 1.

Original entry on oeis.org

291720, 22764165, 875029804, 22620890127, 448035881592, 7302676928666, 102432266545800, 1274461449989715, 14373136466094880, 149314477245194262, 1446563778096423816, 13196809961724011350, 114253624700659216080, 944690705838217837620, 7498935691376059259344, 57398464959432306918747
Offset: 9

Views

Author

Gheorghe Coserea, Jun 04 2017

Keywords

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, this sequence, A288073 f=9, A288074 f=10.
Column 8 of A269921; column 1 of A270412.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 8, 1];
    Table[a[n], {n, 9, 25}] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A287048_ser(N) = {
      my(y = A000108_ser(N+1));
      y*(y-1)^9*(9370183*y^8 + 52321971*y^7 - 83853806*y^6 - 93946092*y^5 + 189910936*y^4 - 57493776*y^3 - 31383264*y^2 + 16878912*y - 1513344)/(y-2)^26;
    };
    Vec(A287048_ser(16))

A288071 a(n) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus 1.

Original entry on oeis.org

420, 14065, 256116, 3392843, 36703824, 344468530, 2908358552, 22620890127, 164767964504, 1137369687454, 7506901051000, 47700234551918, 293370096957504, 1753945289216484, 10229201477344752, 58364244137596695, 326571194881454376, 1795631576981016038, 9718877491130813368, 51858415558095569962
Offset: 5

Views

Author

Gheorghe Coserea, Jun 05 2017

Keywords

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, this sequence, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 4 of A269921.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 4, 1];
    Table[a[n], {n, 5, 24}] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288071_ser(N) = {
      my(y = A000108_ser(N+1));
      y*(y-1)^5*(307*y^4 + 2411*y^3 - 2094*y^2 - 708*y + 504)/(y-2)^14;
    };
    Vec(A288071_ser(20))

A288072 a(n) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus 1.

Original entry on oeis.org

2310, 100156, 2278660, 36703824, 472592916, 5188948072, 50534154408, 448035881592, 3682811916980, 28442316247080, 208462422428152, 1461307573813824, 9857665477085832, 64309102366765200, 407372683115470800, 2514120288996270024, 15159074541052024308, 89512241718624419624
Offset: 6

Views

Author

Gheorghe Coserea, Jun 05 2017

Keywords

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, this sequence, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 5 of A269921.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 5, 1];
    Table[a[n], {n, 6, 23}] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288072_ser(N) = {
      my(y = A000108_ser(N+1));
      -2*y*(y-1)^6*(2140*y^5 + 14751*y^4 - 15604*y^3 - 8820*y^2 + 10176*y - 1488)/(y-2)^17;
    };
    Vec(A288072_ser(18))

A288074 a(n) is the number of rooted maps with n edges and 10 faces on an orientable surface of genus 1.

Original entry on oeis.org

6466460, 678405090, 34225196720, 1137369687454, 28442316247080, 576218752277476, 9908748651241088, 149314477245194262, 2017523504473479992, 24868664942648145372, 283389619978690157408, 3017066587822315930220, 30265092793614787511376, 288055728071446557904968, 2616366012933033221518720
Offset: 11

Views

Author

Gheorghe Coserea, Jun 05 2017

Keywords

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, this sequence.
Column 10 of A269921.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 10, 1];
    Table[a[n], {n, 11, 25}] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288074_ser(N) = {
      my(y = A000108_ser(N+1));
      2*y*(y-1)^11*(734641583*y^10 + 3795452665*y^9 - 7483071778*y^8 - 10235465624*y^7 + 25178445968*y^6 - 7563355856*y^5 - 11624244832*y^4 + 8854962048*y^3 - 1433163264*y^2 - 286758144*y + 65790464)/(y-2)^32;
    };
    Vec(A288074_ser(15))
Showing 1-9 of 9 results.