cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288099 Number of solutions to x^4 + y^4 = z^4 mod n.

Original entry on oeis.org

1, 4, 9, 24, 33, 36, 49, 192, 99, 132, 121, 216, 97, 196, 297, 1536, 193, 396, 361, 792, 441, 484, 529, 1728, 925, 388, 1377, 1176, 1121, 1188, 961, 6144, 1089, 772, 1617, 2376, 1441, 1444, 873, 6336, 481, 1764, 1849, 2904, 3267, 2116, 2209, 13824, 2695, 3700, 1737
Offset: 1

Views

Author

Seiichi Manyama, Jun 05 2017

Keywords

Crossrefs

Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), this sequence (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^4)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ Andrew Howroyd, Jul 17 2018

Extensions

Keyword:mult added by Andrew Howroyd, Jul 17 2018