cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A062775 Number of Pythagorean triples mod n: total number of solutions to x^2 + y^2 = z^2 mod n.

Original entry on oeis.org

1, 4, 9, 24, 25, 36, 49, 96, 99, 100, 121, 216, 169, 196, 225, 448, 289, 396, 361, 600, 441, 484, 529, 864, 725, 676, 891, 1176, 841, 900, 961, 1792, 1089, 1156, 1225, 2376, 1369, 1444, 1521, 2400, 1681, 1764, 1849, 2904, 2475, 2116, 2209, 4032, 2695, 2900
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001

Keywords

Comments

a(n) is multiplicative and, for a prime p, a(p) = p^2. Hence a(n) = n^2 if n is squarefree.

Crossrefs

Cf. A091143 (number of solutions to x^2 + y^2 = z^2 mod 2^n).
Number of solutions to x^k + y^k = z^k mod n: this sequence (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • Maple
    A062775 := proc(n)
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if p = 2 then
                if type(e,'odd') then
                    a := a*p^((3*e+1)/2)*(2^((e+1)/2)-1) ;
                else
                    a := a*p^(3*e/2)*(2^(e/2+1)-1) ;
                end if;
            else
                if type(e,'odd') then
                    a := a*p^((3*e-1)/2)*(p^((e+1)/2)+p^((e-1)/2)-1) ;
                else
                    a := a*p^(3*e/2-1)*(p^(e/2+1)+p^(e/2)-1) ;
                end if;
            end if;
        end do:
        a ;
    end proc:
    seq(A062775(n),n=1..100) ; # R. J. Mathar, Jun 25 2018
  • Mathematica
    Table[cnt=0; Do[If[Mod[x^2+y^2-z^2, n]==0, cnt++ ], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}]
    f[p_, e_] := If[OddQ[e], p^(3*(e+1)/2 - 2)*(p^((e+1)/2) + p^((e-1)/2) - 1), p^(3*e/2 - 1) * (p^(e/2 + 1) + p^(e/2) - 1)]; f[2, e_] := If[OddQ[e], 2^(3*(e+1)/2 - 1)*(2^((e+1)/2) - 1), 2^(3*e/2)*(2^(e/2+1)-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 18 2022 *)

Formula

a(n) is multiplicative. For the powers of primes p, there are four cases. For p=2, there are cases for even and odd powers: a(2^(2k-1)) = 2^(3k-1) (2^k-1) and a(2^(2k)) = 2^(3k) (2^(k+1)-1). Similarly, for odd primes p, a(p^(2k-1)) = p^(3k-2) (p^k+p^(k-1)-1) and a(p^(2k)) = p^(3k-1) (p^(k+1)+p^k-1). - T. D. Noe, Dec 22 2003
From Gottfried Helms, May 13 2004: (Start)
If the canonical form of n is n = 2^i * 3^j * 5^k *... * p^q, then it appears that a(n) = n * f(2, i) * f(3, j) * f(5, k) * ... * f(p, q), where f(p, 1) = p for any prime p; f(2, i) = 2^i + 2^i - 2^ceiling(i/2); f(p, i) = p^i + p^(i-1) - p^floor((i-1)/2) for any odd prime p.
For example, a(7) = 49 because a(7) = 7*f(7, 1) = 7*7; a(16) = 448 because a(16) = a(2^4) = 16 * f(2, 4) = 16 * (16+16-4) = 16*28 = 448; a(12) = 216 because a(12) = a(3*2^2) = 12*f(2, 2)*f(3, 1) = 12*(4+4-2)*3 = 216. (End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16/45) * Product_{p prime} (1 + 1/(p^3 + p^2 + p)) = (16/45)*zeta(3)/zeta(4) = 0.39488943478263044166... . - Amiram Eldar, Oct 18 2022, Nov 30 2023

Extensions

More terms from Sascha Kurz, Mar 25 2002

A063454 Number of solutions to x^3 + y^3 = z^3 mod n.

Original entry on oeis.org

1, 4, 9, 20, 25, 36, 55, 112, 189, 100, 121, 180, 109, 220, 225, 448, 289, 756, 487, 500, 495, 484, 529, 1008, 725, 436, 2187, 1100, 841, 900, 1081, 2048, 1089, 1156, 1375, 3780, 973, 1948, 981, 2800, 1681, 1980, 1513, 2420, 4725, 2116, 2209, 4032
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 25 2001

Keywords

Comments

Equivalently, the number of solutions to x^3 + y^3 + z^3 == 0 (mod n). - Andrew Howroyd, Jul 18 2018

Crossrefs

Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), this sequence (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^(i^3%n)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 18 2018
    
  • Python
    def A063454(n):
        ndict = {}
        for i in range(n):
            m = pow(i,3,n)
            if m in ndict:
                ndict[m] += 1
            else:
                ndict[m] = 1
        count = 0
        for i in ndict:
            ni = ndict[i]
            for j in ndict:
                k = (i+j) % n
                if k in ndict:
                    count += ni*ndict[j]*ndict[k]
        return count # Chai Wah Wu, Jun 06 2017

Extensions

More terms from Dean Hickerson, Jul 26 2001

A288100 Number of solutions to x^5 + y^5 = z^5 mod n.

Original entry on oeis.org

1, 4, 9, 20, 25, 36, 49, 112, 99, 100, 151, 180, 169, 196, 225, 704, 289, 396, 361, 500, 441, 604, 529, 1008, 1625, 676, 1377, 980, 841, 900, 1951, 4864, 1359, 1156, 1225, 1980, 1369, 1444, 1521, 2800, 601, 1764, 1849, 3020, 2475, 2116, 2209, 6336, 2695, 6500, 2601
Offset: 1

Views

Author

Seiichi Manyama, Jun 05 2017

Keywords

Comments

Equivalently, the number of solutions to x^5 + y^5 + z^5 == 0 (mod n). - Andrew Howroyd, Jul 17 2018

Crossrefs

Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), this sequence (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^5)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 17 2018

Extensions

Keyword:mult added by Andrew Howroyd, Jul 17 2018

A288101 Number of solutions to x^6 + y^6 = z^6 mod n.

Original entry on oeis.org

1, 4, 9, 24, 25, 36, 73, 192, 243, 100, 121, 216, 217, 292, 225, 1024, 289, 972, 217, 600, 657, 484, 529, 1728, 725, 868, 2673, 1752, 841, 900, 1441, 6144, 1089, 1156, 1825, 5832, 3241, 868, 1953, 4800, 1681, 2628, 505, 2904, 6075, 2116, 2209, 9216, 3871, 2900, 2601
Offset: 1

Views

Author

Seiichi Manyama, Jun 05 2017

Keywords

Crossrefs

Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), this sequence (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^6)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ Andrew Howroyd, Jul 17 2018

Extensions

Keyword:mult added by Andrew Howroyd, Jul 17 2018

A288102 Number of solutions to x^7 + y^7 = z^7 mod n.

Original entry on oeis.org

1, 4, 9, 20, 25, 36, 49, 112, 99, 100, 121, 180, 169, 196, 225, 704, 289, 396, 361, 500, 441, 484, 529, 1008, 725, 676, 1377, 980, 589, 900, 961, 4864, 1089, 1156, 1225, 1980, 1369, 1444, 1521, 2800, 1681, 1764, 4999, 2420, 2475, 2116, 2209, 6336, 10633, 2900
Offset: 1

Views

Author

Seiichi Manyama, Jun 05 2017

Keywords

Comments

Equivalently, the number of solutions to x^7 + y^7 + z^7 == 0 (mod n). - Andrew Howroyd, Jul 17 2018

Crossrefs

Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), this sequence (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^7)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 17 2018

Extensions

Keyword:mult added by Andrew Howroyd, Jul 17 2018

A288103 Number of solutions to x^8 + y^8 = z^8 mod n.

Original entry on oeis.org

1, 4, 9, 24, 33, 36, 49, 192, 99, 132, 121, 216, 97, 196, 297, 1536, 385, 396, 361, 792, 441, 484, 529, 1728, 925, 388, 1377, 1176, 1121, 1188, 961, 12288, 1089, 1540, 1617, 2376, 1441, 1444, 873, 6336, 641, 1764, 1849, 2904, 3267, 2116, 2209, 13824, 2695, 3700
Offset: 1

Views

Author

Seiichi Manyama, Jun 05 2017

Keywords

Crossrefs

Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), this sequence (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • Mathematica
    Table[cnt=0; Do[If[Mod[x^8 + y^8 - z^8, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* Vincenzo Librandi, Jul 18 2018 *)
  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^8)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ Andrew Howroyd, Jul 17 2018

Extensions

Keyword:mult added by Andrew Howroyd, Jul 17 2018

A288104 Number of solutions to x^9 + y^9 = z^9 mod n.

Original entry on oeis.org

1, 4, 9, 20, 25, 36, 55, 112, 189, 100, 121, 180, 109, 220, 225, 704, 289, 756, 487, 500, 495, 484, 529, 1008, 725, 436, 5103, 1100, 841, 900, 1081, 4864, 1089, 1156, 1375, 3780, 973, 1948, 981, 2800, 1681, 1980, 1513, 2420, 4725, 2116, 2209, 6336, 2989, 2900, 2601
Offset: 1

Views

Author

Seiichi Manyama, Jun 05 2017

Keywords

Comments

Equivalently, the number of solutions to x^9 + y^9 + z^9 == 0 (mod n). - Andrew Howroyd, Jul 17 2018

Crossrefs

Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), this sequence (k=9), A288105 (k=10).

Programs

  • Mathematica
    Table[cnt=0; Do[If[Mod[x^9 + y^9 - z^9, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* Vincenzo Librandi, Jul 18 2018 *)
  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^9)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 17 2018
    
  • Python
    def A288104(n):
        ndict = {}
        for i in range(n):
            m = pow(i,9,n)
            if m in ndict:
                ndict[m] += 1
            else:
                ndict[m] = 1
        count = 0
        for i in ndict:
            ni = ndict[i]
            for j in ndict:
                k = (i+j) % n
                if k in ndict:
                    count += ni*ndict[j]*ndict[k]
        return count # Chai Wah Wu, Jun 05 2017

Extensions

Keyword:mult added by Andrew Howroyd, Jul 17 2018

A288105 Number of solutions to x^10 + y^10 = z^10 mod n.

Original entry on oeis.org

1, 4, 9, 24, 25, 36, 49, 192, 99, 100, 201, 216, 169, 196, 225, 1024, 289, 396, 361, 600, 441, 804, 529, 1728, 3125, 676, 1377, 1176, 841, 900, 601, 6144, 1809, 1156, 1225, 2376, 1369, 1444, 1521, 4800, 1201, 1764, 1849, 4824, 2475, 2116, 2209, 9216, 2695, 12500
Offset: 1

Views

Author

Seiichi Manyama, Jun 05 2017

Keywords

Crossrefs

Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), this sequence (k=10).

Programs

  • Mathematica
    Table[cnt=0; Do[If[Mod[x^10 + y^10 - z^10, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* Vincenzo Librandi, Jul 18 2018 *)
  • Python
    def A288105(n):
        ndict = {}
        for i in range(n):
            m = pow(i,10,n)
            if m in ndict:
                ndict[m] += 1
            else:
                ndict[m] = 1
        count = 0
        for i in ndict:
            ni = ndict[i]
            for j in ndict:
                k = (i+j) % n
                if k in ndict:
                    count += ni*ndict[j]*ndict[k]
        return count # Chai Wah Wu, Jun 05 2017

Extensions

Keyword:mult added by Andrew Howroyd, Jul 17 2018
Showing 1-8 of 8 results.