A288103 Number of solutions to x^8 + y^8 = z^8 mod n.
1, 4, 9, 24, 33, 36, 49, 192, 99, 132, 121, 216, 97, 196, 297, 1536, 385, 396, 361, 792, 441, 484, 529, 1728, 925, 388, 1377, 1176, 1121, 1188, 961, 12288, 1089, 1540, 1617, 2376, 1441, 1444, 873, 6336, 641, 1764, 1849, 2904, 3267, 2116, 2209, 13824, 2695, 3700
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[cnt=0; Do[If[Mod[x^8 + y^8 - z^8, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* Vincenzo Librandi, Jul 18 2018 *)
-
PARI
a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^8)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ Andrew Howroyd, Jul 17 2018
Extensions
Keyword:mult added by Andrew Howroyd, Jul 17 2018