A288105 Number of solutions to x^10 + y^10 = z^10 mod n.
1, 4, 9, 24, 25, 36, 49, 192, 99, 100, 201, 216, 169, 196, 225, 1024, 289, 396, 361, 600, 441, 804, 529, 1728, 3125, 676, 1377, 1176, 841, 900, 601, 6144, 1809, 1156, 1225, 2376, 1369, 1444, 1521, 4800, 1201, 1764, 1849, 4824, 2475, 2116, 2209, 9216, 2695, 12500
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Seiichi Manyama)
Crossrefs
Programs
-
Mathematica
Table[cnt=0; Do[If[Mod[x^10 + y^10 - z^10, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* Vincenzo Librandi, Jul 18 2018 *)
-
Python
def A288105(n): ndict = {} for i in range(n): m = pow(i,10,n) if m in ndict: ndict[m] += 1 else: ndict[m] = 1 count = 0 for i in ndict: ni = ndict[i] for j in ndict: k = (i+j) % n if k in ndict: count += ni*ndict[j]*ndict[k] return count # Chai Wah Wu, Jun 05 2017
Extensions
Keyword:mult added by Andrew Howroyd, Jul 17 2018