cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A288187 Triangle read by rows: T(n,m) (n >= m >= 1) = number of chambers (or regions) formed by drawing the line segments connecting any two of the (n+1) X (m+1) lattice points in an n X m lattice polygon.

Original entry on oeis.org

4, 16, 56, 46, 176, 520, 104, 388, 1152, 2584, 214, 822, 2502, 5700, 12368, 380, 1452, 4392, 9944, 21504, 37400, 648, 2516, 7644, 17380, 37572, 65810, 115532, 1028, 3952, 12120, 27572, 59784, 105128, 184442, 294040, 1562, 6060, 18476, 42066, 91654, 161352, 282754, 450864, 690816
Offset: 1

Views

Author

Hugo Pfoertner, Jun 06 2017

Keywords

Comments

Chambers are counted regardless of their numbers of vertices.
The n X m lattice polygon mentioned in the definition is an n X m grid of square cells, formed using a grid of n+1 X m+1 points. - N. J. A. Sloane, Feb 07 2019

Examples

			The diagonals of the 1 X 1 lattice polygon, i.e. the square, cut it into 4 triangles. Therefore T(1,1)=4.
Triangle begins
4,
16, 56,
46, 176, 520,
104, 388, 1152, 2584,
214, 822, 2502, 5700, 12368,
...
		

Crossrefs

The first column is A306302. For column 2 see A333279, A333280, A333281.
If the initial points are arranged around a circle rather than a square we get A006533 and A007678.

Extensions

T(4,1) added from A306302. - N. J. A. Sloane, Feb 07 2019
T(3,3) corrected and rows for n=4..9 added by Max Alekseyev, Apr 05 2019.

A288177 Maximum number of vertices of any convex polygon formed by drawing all line segments connecting any two lattice points of an n X m convex lattice polygon in the plane written as triangle T(n,m), n >= 1, 1 <= m <= n.

Original entry on oeis.org

3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 5, 6, 6, 4, 5, 5, 6, 6, 6, 4, 5, 6, 6, 6, 7, 7, 4, 5, 7, 6, 7, 7, 7, 7, 4, 5, 6, 6, 7, 7, 8, 8, 8, 4, 5, 6, 6, 7, 7, 8, 8, 8, 7, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8, 8, 4, 5, 7, 6, 7, 7, 8, 7, 8, 8, 8, 8, 4, 5, 8, 6, 7, 7, 8, 7, 8, 8, 8, 8, 8, 4, 5, 8, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 4, 5, 8, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 4, 5, 7, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 4, 5, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 4, 5, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 9
Offset: 1

Views

Author

Hugo Pfoertner, Jun 06 2017

Keywords

Comments

The table is given in the section "Results" of the notes by M. E. Pfetsch and G. M. Ziegler, see link.
An n X m convex lattice polygon presumably means an n X m grid of square cells, formed using a grid of n+1 X m+1 points. - N. J. A. Sloane, Feb 07 2019

Examples

			Drawing the diagonals in a lattice square of size 1 X 1 produces 4 triangles, so T(1,1)=3.
Triangle begins:
  3;
  4, 4;
  4, 4, 4;
  4, 4, 5, 5;
  4, 5, 5, 6, 6;
  4, 5, 5, 6, 6, 6;
  4, 5, 6, 6, 6, 7, 7;
  ...
		

Crossrefs

Cf. A288178 (diagonal of table), A288179, A288180, A288181, A288187.
Showing 1-2 of 2 results.