cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288414 Expansion of Product_{k>=1} (1 + x^k)^(sigma_2(k)).

Original entry on oeis.org

1, 1, 5, 15, 41, 107, 286, 700, 1735, 4162, 9803, 22673, 51822, 116376, 258548, 567197, 1230763, 2642958, 5622616, 11850537, 24769248, 51353095, 105662389, 215838649, 437890022, 882562763, 1767741732, 3519599996, 6967592060, 13717874719, 26865949075
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Crossrefs

Product_{k>=1} (1 + x^k)^sigma_m(k): A107742 (m=0), A192065 (m=1), this sequence (m=2), A288415 (m=3).

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+q^k)^DivisorSigma(2,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    with(numtheory): seq(coeff(series(mul((1+x^k)^(sigma[2](k)),k=1..n),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[2, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
  • PARI
    m=40; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^sigma(k,2))) \\ G. C. Greubel, Oct 30 2018
    

Formula

a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A288419(k)*a(n-k) for n > 0.
a(n) ~ exp(2^(5/4) * (7*Zeta(3))^(1/4) * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - 5^(1/4) * Pi * n^(1/4) / (2^(13/4) * 3^(7/4) * (7*Zeta(3))^(1/4))) * (7*Zeta(3))^(1/8) / (2^(15/8) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 23 2018
G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))^(j^2). - Ilya Gutkovskiy, Aug 26 2018