cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288418 a(n) = Sum_{d|n} d^2*A000593(n/d).

Original entry on oeis.org

1, 5, 13, 21, 31, 65, 57, 85, 130, 155, 133, 273, 183, 285, 403, 341, 307, 650, 381, 651, 741, 665, 553, 1105, 806, 915, 1210, 1197, 871, 2015, 993, 1365, 1729, 1535, 1767, 2730, 1407, 1905, 2379, 2635, 1723, 3705, 1893, 2793, 4030, 2765, 2257, 4433, 2850, 4030
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000290 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 27 2018

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), this sequence (k=2), A288419 (k=3), A288420 (k=4).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Function[d, d^2*DivisorSum[n/d, If[OddQ[#], #, 0]&]] ];
    Array[a, 50] (* Jean-François Alcover, Jul 03 2017 *)
    f[p_, e_] := (p^(e + 1) - 1)*(p^(e + 2) - 1)/((p - 1)*(p^2 - 1)); f[2, e_] := (4^(e + 1) - 1)/3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d^2*sigma((n/d)>>valuation(n/d, 2))); \\ Michel Marcus, Jul 03 2017; corrected Jun 12 2022

Formula

L.g.f.: log(Product_{k>=1} (1 + x^k)^sigma(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jun 19 2018
From Amiram Eldar, Nov 13 2022: (Start)
a(n) = A001001(n) for odd n.
Multiplicative with a(2^e) = (4^(e+1)-1)/3 and a(p^e) = (p^(e+1)-1)*(p^(e+2)-1)/((p-1)*(p^2-1)) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)*zeta(3)/4 = A183699 / 4 = 0.494326... . (End)