cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289192 A(n,k) = n! * Laguerre(n,-k); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 7, 6, 1, 4, 14, 34, 24, 1, 5, 23, 86, 209, 120, 1, 6, 34, 168, 648, 1546, 720, 1, 7, 47, 286, 1473, 5752, 13327, 5040, 1, 8, 62, 446, 2840, 14988, 58576, 130922, 40320, 1, 9, 79, 654, 4929, 32344, 173007, 671568, 1441729, 362880
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2017

Keywords

Examples

			Square array A(n,k) begins:
:   1,    1,    1,     1,     1,     1, ...
:   1,    2,    3,     4,     5,     6, ...
:   2,    7,   14,    23,    34,    47, ...
:   6,   34,   86,   168,   286,   446, ...
:  24,  209,  648,  1473,  2840,  4929, ...
: 120, 1546, 5752, 14988, 32344, 61870, ...
		

Crossrefs

Rows n=0-2 give: A000012, A000027(k+1), A008865(k+2).
Main diagonal gives A277373.

Programs

  • Maple
    A:= (n,k)-> n! * add(binomial(n, i)*k^i/i!, i=0..n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := n! * LaguerreL[n, -k];
    Table[A[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 05 2019 *)
  • PARI
    {T(n, k) = if(n<2, k*n+1, (2*n+k-1)*T(n-1, k)-(n-1)^2*T(n-2, k))} \\ Seiichi Manyama, Feb 03 2021
    
  • PARI
    T(n, k) = n!*pollaguerre(n, 0, -k); \\ Michel Marcus, Feb 05 2021
  • Python
    from sympy import binomial, factorial as f
    def A(n, k): return f(n)*sum(binomial(n, i)*k**i/f(i) for i in range(n + 1))
    for n in range(13): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Jun 28 2017
    

Formula

A(n,k) = n! * Sum_{i=0..n} k^i/i! * binomial(n,i).
E.g.f. of column k: exp(k*x/(1-x))/(1-x).
A(n, k) = (-1)^n*KummerU(-n, 1, -k). - Peter Luschny, Feb 12 2020
A(n, k) = (2*n+k-1)*A(n-1, k) - (n-1)^2*A(n-2, k) for n > 1. - Seiichi Manyama, Feb 03 2021