A289215 a(n) = n! * Laguerre(n,-9).
1, 10, 119, 1626, 24945, 422994, 7836255, 157169826, 3388099329, 78031713690, 1910451937671, 49510386761130, 1353167691897969, 38878205830928226, 1170930069982659375, 36875214316479123954, 1211549306913066598785, 41445016025330141416746
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..430
- Eric Weisstein's World of Mathematics, Laguerre Polynomial
- Wikipedia, Laguerre polynomials
- Index entries for sequences related to Laguerre polynomials
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(9*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 11 2018 -
Maple
a:= n-> n! * add(binomial(n, i)*9^i/i!, i=0..n): seq(a(n), n=0..20);
-
Mathematica
Table[n!*LaguerreL[n, -9], {n, 0, 20}] (* Indranil Ghosh, Jul 04 2017 *)
-
PARI
my(x = 'x + O('x^30)); Vec(serlaplace(exp(9*x/(1-x))/(1-x))) \\ Michel Marcus, Jul 04 2017
-
PARI
a(n) = n!*pollaguerre(n, 0, -9); \\ Michel Marcus, Feb 05 2021
-
Python
from mpmath import * mp.dps=100 def a(n): return int(fac(n)*laguerre(n, 0, -9)) print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
Formula
E.g.f.: exp(9*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 9^i/i! * binomial(n,i).
a(n) ~ exp(-9/2 + 6*sqrt(n) - n) * n^(n + 1/4) / sqrt(6) * (1 + 181/(48*sqrt(n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 9^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020