A289292
Coefficients in expansion of E_4^(1/2).
Original entry on oeis.org
1, 120, -6120, 737760, -107249640, 17385063120, -3014720249760, 547287510713280, -102701836021530600, 19762301660609250840, -3878226140959368843120, 773209219953012480001440, -156173318001506652330786720, 31888935085481430265623676560
Offset: 0
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
A289307
Coefficients in expansion of E_4^(1/4) in powers of q.
Original entry on oeis.org
1, 60, -4860, 660480, -105063420, 18206269560, -3328461434880, 631226199152640, -122944850563477500, 24436796345920143420, -4935178772322020730360, 1009598430837232126725120, -208736157503462405753487360, 43541664791244563211024015480
Offset: 0
From _Seiichi Manyama_, Jul 07 2017: (Start)
2F1(1/12, 5/12; 1; 1728/j)
= 1 + (1*5)/(1*1) * 12/j + (1*5*13*17)/(1*1*2*2) * (12/j)^2 + (1*5*13*17*25*29)/(1*1*2*2*3*3) * (12/j)^3 + ...
= 1 + 60/j + 39780/j^2 + 38454000/j^3 + ...
= 1 + 60*q - 44640*q^2 + 21399120*q^3 - ...
+ 39780*q^2 - 59192640*q^3 + ...
+ 38454000*q^3 - ...
+ ...
= 1 + 60*q - 4860*q^2 + 660480*q^3 - ... (End)
- Seiichi Manyama, Table of n, a(n) for n = 0..424
- M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22. Published in B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001, pp. 771-808, section 2.3. Example 3.
- R. S. Maier, Nonlinear differential equations satisfied by certain classical modular forms, arXiv:0807.1081 [math.NT], 2008-2010, p. 34 equation (7.29a).
-
a[ n_] := SeriesCoefficient[ ComposeSeries[ Series[ Hypergeometric2F1[ 1/12, 5/12, 1, q], {q, 0, n}], q^2 / Series[q^2 KleinInvariantJ[ Log[q]/(2 Pi I)], {q, 0, n}]], {q, 0, n}]; (* Michael Somos, Jun 21 2018 *)
A289308
Coefficients in expansion of E_4^(3/8).
Original entry on oeis.org
1, 90, -5940, 758520, -115431930, 19355028840, -3447208777320, 639751846440960, -122326632902618100, 23925871041887048130, -4763590542726586318440, 962102309316632909723880, -196619722885250960565506040, 40580696990507644723354537320
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(3/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289309
Coefficients in expansion of E_4^(5/8).
Original entry on oeis.org
1, 150, -5400, 625200, -86672550, 13570016400, -2289741037200, 406440122001600, -74830416797043000, 14162747887897808550, -2738995393669565720400, 538973037306449327998800, -107578899914865970323788400, 21729813219122500082762389200
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(5/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289319
Coefficients in expansion of E_4^(7/8).
Original entry on oeis.org
1, 210, -1260, 232680, -28907970, 4211355960, -671557897080, 113817372354240, -20151698294479500, 3687092782592216970, -692109989731133096760, 132609267059636375116920, -25838624519733523814390760, 5105657091664960508653858680
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(7/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289247
Coefficients in expansion of 1/E_4^(1/8).
Original entry on oeis.org
1, -30, 3780, -616440, 111056910, -21135698280, 4165203862440, -840914061328320, 172810940671692900, -35998781800053352710, 7579904611028433074280, -1609957152292592382408360, 344417407415742189796786680, -74127324674775434904036905640
Offset: 0
E_4^(k/8):
A001943 (k=-8),
A289566 (k=-4),
A295815 (k=-2), this sequence (k=-1),
A108091 (k=1),
A289307 (k=2),
A289308 (k=3),
A289292 (k=4),
A289309 (k=5),
A289318 (k=6),
A289319 (k=7),
A004009 (k=8).
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(-1/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A299955
Coefficients in expansion of E_4^(3/2).
Original entry on oeis.org
1, 360, 24840, -465120, 57417480, -6800282640, 930889890720, -139401582644160, 22250341370421000, -3723955494287559480, 646515765251485521840, -115559140273640812421280, 21150946022800731753255840, -3948247836773858791840263120
Offset: 0
E_4^(k/8):
A108091 (k=1),
A289307 (k=2),
A289308 (k=3),
A289292 (k=4),
A289309 (k=5),
A289318 (k=6),
A289319 (k=7),
A004009 (k=8), this sequence (k=12),
A008410 (k=16),
A008411 (k=24),
A282012 (k=32),
A282015 (k=40).
Showing 1-7 of 7 results.
Comments