cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A289292 Coefficients in expansion of E_4^(1/2).

Original entry on oeis.org

1, 120, -6120, 737760, -107249640, 17385063120, -3014720249760, 547287510713280, -102701836021530600, 19762301660609250840, -3878226140959368843120, 773209219953012480001440, -156173318001506652330786720, 31888935085481430265623676560
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): A289291 (k=2), this sequence (k=4), A289293 (k=6), A004009 (k=8), A289294 (k=10), A289295 (k=14).
E_4^(k/8): A108091 (k=1), A289307 (k=2), A289308 (k=3), this sequence (k=4), A289309 (k=5), A289318 (k=6), A289319 (k=7).
Cf. A001421, A004009 (E_4), A110163.

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A110163(n)/2).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(3/2), where c = 3*Gamma(1/3)^9 / (32*sqrt(2)*Pi^(13/2)) = 0.27646925986847687648926173728588572192308632719... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018
G.f.: 3F2(1/6, 1/2, 5/6; 1, 1; 1728/j) where j is the elliptic modular invariant (A000521). - Seiichi Manyama, Jul 07 2017

A289307 Coefficients in expansion of E_4^(1/4) in powers of q.

Original entry on oeis.org

1, 60, -4860, 660480, -105063420, 18206269560, -3328461434880, 631226199152640, -122944850563477500, 24436796345920143420, -4935178772322020730360, 1009598430837232126725120, -208736157503462405753487360, 43541664791244563211024015480
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Examples

			From _Seiichi Manyama_, Jul 07 2017: (Start)
2F1(1/12, 5/12; 1; 1728/j)
= 1 + (1*5)/(1*1) * 12/j + (1*5*13*17)/(1*1*2*2) * (12/j)^2 + (1*5*13*17*25*29)/(1*1*2*2*3*3) * (12/j)^3 + ...
= 1 + 60/j + 39780/j^2 + 38454000/j^3 + ...
= 1 + 60*q - 44640*q^2 + 21399120*q^3 - ...
           + 39780*q^2 - 59192640*q^3 + ...
                       + 38454000*q^3 - ...
                                      + ...
= 1 + 60*q -  4860*q^2 +   660480*q^3 - ... (End)
		

Crossrefs

E_4^(k/8): A108091 (k=1), this sequence (k=2), A289308 (k=3), A289292 (k=4), A289309 (k=5), A289318 (k=6), A289319 (k=7).
Cf. A000521 (j), A004009 (E_4), A066395 (1/j), A092870, A110163, A289210.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ ComposeSeries[ Series[ Hypergeometric2F1[ 1/12, 5/12, 1, q], {q, 0, n}], q^2 / Series[q^2 KleinInvariantJ[ Log[q]/(2 Pi I)], {q, 0, n}]], {q, 0, n}]; (* Michael Somos, Jun 21 2018 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A110163(n)/4).
G.f.: 2F1(1/12, 5/12; 1; 1728/j) where j is the elliptic modular invariant (A000521). - Seiichi Manyama, Jul 06 2017 [See also the Kontsevich and Zagier link, where t = 1728/j = 1 - Sum_{k>=0} A289210(k)*q^k, with q = q(z) = exp(2*Pi*I*z), Im(z) > 0. - Wolfdieter Lang, May 27 2018]
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(5/4), where c = sqrt(3) * Gamma(1/3)^(9/2) * Gamma(1/4) / (16 * 2^(3/4) * Pi^4) = 0.201967785736579402060958871696381229013432952780653381728912717635... - Vaclav Kotesovec, Jul 07 2017, updated Mar 04 2018

A289308 Coefficients in expansion of E_4^(3/8).

Original entry on oeis.org

1, 90, -5940, 758520, -115431930, 19355028840, -3447208777320, 639751846440960, -122326632902618100, 23925871041887048130, -4763590542726586318440, 962102309316632909723880, -196619722885250960565506040, 40580696990507644723354537320
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_4^(k/8): A108091 (k=1), A289307 (k=2), this sequence (k=3), A289292 (k=4), A289309 (k=5), A289318 (k=6), A289319 (k=7).
Cf. A004009 (E_4), A110163.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(3/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(3*A110163(n)/8).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(11/8), where c = 3^(7/4) * Gamma(1/3)^(27/4) / (64 * 2^(3/8) * Pi^(9/2) * Gamma(5/8)) = 0.2574920621515873836544977885672468081360882154861344422709504189964... - Vaclav Kotesovec, Jul 09 2017, updated Mar 05 2018

A289309 Coefficients in expansion of E_4^(5/8).

Original entry on oeis.org

1, 150, -5400, 625200, -86672550, 13570016400, -2289741037200, 406440122001600, -74830416797043000, 14162747887897808550, -2738995393669565720400, 538973037306449327998800, -107578899914865970323788400, 21729813219122500082762389200
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_4^(k/8): A108091 (k=1), A289307 (k=2), A289308 (k=3), A289292 (k=4), this sequence (k=5), A289318 (k=6), A289319 (k=7).
Cf. A004009 (E_4), A110163.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(5/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(5*A110163(n)/8).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(13/8), where c = 5 * 3^(5/4) * Gamma(1/3)^(45/4) / (256 * 2^(5/8) * Pi^(15/2) * Gamma(3/8)) = 0.2571085249207580781634342667473393997795373224370302803101380883544... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018

A289318 Coefficients in expansion of E_4^(3/4).

Original entry on oeis.org

1, 180, -3780, 447840, -59046660, 8921092680, -1463828444640, 253953515257920, -45858209756343300, 8534765953624978260, -1626301691950399586280, 315807346469727624396960, -62284193156782292089690080, 12443904711281870749228431240
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_4^(k/8): A108091 (k=1), A289307 (k=2), A289308 (k=3), A289292 (k=4), A289309 (k=5), this sequence (k=6), A289319 (k=7).
Cf. A004009 (E_4), A110163.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(3/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(3*A110163(n)/4).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(7/4), where c = 3^(5/2) * Gamma(1/3)^(27/2) / (256 * 2^(3/4) * Pi^9 * Gamma(1/4)) = 0.2007048471908800363193160136812560289856774734680572658944418664975... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018

A289247 Coefficients in expansion of 1/E_4^(1/8).

Original entry on oeis.org

1, -30, 3780, -616440, 111056910, -21135698280, 4165203862440, -840914061328320, 172810940671692900, -35998781800053352710, 7579904611028433074280, -1609957152292592382408360, 344417407415742189796786680, -74127324674775434904036905640
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2017

Keywords

Crossrefs

E_4^(k/8): A001943 (k=-8), A289566 (k=-4), A295815 (k=-2), this sequence (k=-1), A108091 (k=1), A289307 (k=2), A289308 (k=3), A289292 (k=4), A289309 (k=5), A289318 (k=6), A289319 (k=7), A004009 (k=8).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(-1/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(-A110163(n)/8).
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(7/8), where c = Pi^(3/2) / (2^(15/8) * 3^(1/4) * Gamma(1/3)^(9/4) * Gamma(9/8)) = 0.133402757019143151407904538533... - Vaclav Kotesovec, Jul 09 2017, updated Mar 05 2018
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A300147(k)*a(n-k) for n > 0. - Seiichi Manyama, Feb 27 2018

A299955 Coefficients in expansion of E_4^(3/2).

Original entry on oeis.org

1, 360, 24840, -465120, 57417480, -6800282640, 930889890720, -139401582644160, 22250341370421000, -3723955494287559480, 646515765251485521840, -115559140273640812421280, 21150946022800731753255840, -3948247836773858791840263120
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2018

Keywords

Crossrefs

E_4^(k/8): A108091 (k=1), A289307 (k=2), A289308 (k=3), A289292 (k=4), A289309 (k=5), A289318 (k=6), A289319 (k=7), A004009 (k=8), this sequence (k=12), A008410 (k=16), A008411 (k=24), A282012 (k=32), A282015 (k=40).

Formula

Convolution cube of A289292.
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(5/2), where c = 81*Gamma(1/3)^27 / (32768*sqrt(2)*Pi^(37/2)) = 0.39832876770813443250501819621900549862424768734... - Vaclav Kotesovec, Mar 05 2018

A378469 Coefficients in expansion of (1/E_4)^4.

Original entry on oeis.org

1, -960, 567360, -266138880, 108735481920, -40500351480960, 14114830665358080, -4678563821426250240, 1491145606587529742400, -460511820740945555286720, 138585483759128030100927360, -40812342463218781348220286720, 11800049457060387849887324117760, -3358272262154871467174772417214080
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 27 2024

Keywords

Comments

In general, for k > 0, the expansion of 1/(E_4)^k is asymptotic to (-1)^n * k * 2^(9*k) * Pi^(12*k) * n^(k-1) * exp(Pi*sqrt(3)*n) / (3^(2*k) * Gamma(1/3)^(18*k) * Gamma(k+1)).

Crossrefs

Cf. A001943 (k=1), A287933 (k=2), A378468 (k=3).
Cf. A289566 (k=1/2), A295815 (k=1/4), A289247 (k=1/8).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1+240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}])^(-4), {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * 34359738368 * Pi^48 * n^3 * exp(Pi*sqrt(3)*n) / (19683 * Gamma(1/3)^72).
Showing 1-8 of 8 results.