Original entry on oeis.org
1, 2, 2, 3, 6, 6, 3, 6, 6, 4, 10, 10, 12, 30, 30, 12, 30, 30, 4, 10, 10, 12, 30, 30, 12, 30, 30, 5, 14, 14, 15, 42, 42, 15, 42, 42, 20, 70, 70, 60, 210, 210, 60, 210, 210, 20, 70, 70, 60, 210, 210, 60, 210, 210, 5, 14, 14, 15, 42, 42, 15, 42, 42, 20, 70, 70
Offset: 0
a(42) = A289815(42) * A289816(42) = 20 * 3 = 60.
-
a(n) = { my (v=1);
for (o=2, oo,
if (n==0, return (v));
if (gcd(v, o)==1 && omega(o)==1,
if (n % 3, v *= o);
n \= 3;
);
);}
-
from sympy import gcd, primefactors
def omega(n): return 0 if n==1 else len(primefactors(n))
def a(n):
v, o = 1, 2
while True:
if n==0: return v
if gcd(v, o)==1 and omega(o)==1:
if n%3: v*=o
n //= 3
o+=1
print([a(n) for n in range(101)]) # Indranil Ghosh, Aug 02 2017
A289905
Square array T(n,k) (n>0, k>0) read by antidiagonals: if gcd(n,k)>1 then T(n,k)=-1, otherwise T(n,k) = the unique m such that A289815(m) = n and A289816(m) = k.
Original entry on oeis.org
0, 1, 2, 3, -1, 6, 9, 5, 7, 18, 27, -1, -1, -1, 54, 4, 11, 15, 21, 19, 8, 81, -1, 33, -1, 57, -1, 162, 243, 29, -1, 45, 63, -1, 55, 486, 729, -1, 87, -1, -1, -1, 165, -1, 1458, 10, 83, 249, 99, 22, 17, 171, 489, 163, 20, 2187, -1, -1, -1, 135, -1, 189, -1, -1
Offset: 1
The table begins:
x\y: 1 2 3 4 5 6 7 8 ...
1: 0 2 6 18 54 8 162 486 ...
2: 1 -1 7 -1 19 -1 55 -1 ...
3: 3 5 -1 21 57 -1 165 489 ...
4: 9 -1 15 -1 63 -1 171 -1 ...
5: 27 11 33 45 -1 17 189 513 ...
6: 4 -1 -1 -1 22 -1 58 -1 ...
7: 81 29 87 99 135 35 -1 567 ...
8: 243 -1 249 -1 297 -1 405 -1 ...
...
Original entry on oeis.org
0, 2, 1, 6, 8, 7, 3, 5, 4, 18, 20, 19, 24, 26, 25, 21, 23, 22, 9, 11, 10, 15, 17, 16, 12, 14, 13, 54, 56, 55, 60, 62, 61, 57, 59, 58, 72, 74, 73, 78, 80, 79, 75, 77, 76, 63, 65, 64, 69, 71, 70, 66, 68, 67, 27, 29, 28, 33, 35, 34, 30, 32, 31, 45, 47, 46, 51
Offset: 0
Cf.
A048647,
A055115,
A055116,
A055120,
A059249,
A117966,
A117967,
A117968,
A225901,
A242399,
A244042,
A263273,
A289813,
A289814,
A289815,
A289816,
A289831,
A289838,
A300222,
A321464.
-
a004488 0 = 0
a004488 n = if d == 0 then 3 * a004488 n' else 3 * a004488 n' + 3 - d
where (n', d) = divMod n 3
-- Reinhard Zumkeller, Mar 12 2014
-
a:= proc(n) local t, r, i;
t, r:= n, 0;
for i from 0 while t>0 do
r:= r+3^i *irem(2*irem(t, 3, 't'), 3)
od; r
end:
seq(a(n), n=0..80); # Alois P. Heinz, Sep 07 2011
-
a[n_] := FromDigits[Mod[3-IntegerDigits[n, 3], 3], 3]; Table[a[n], {n, 0, 66}] (* Jean-François Alcover, Mar 03 2014 *)
-
a(n) = my(b=3); fromdigits(apply(d->(b-d)%b, digits(n, b)), b);
vector(67, i, a(i-1)) \\ Gheorghe Coserea, Apr 23 2018
-
from sympy.ntheory.factor_ import digits
def a(n): return int("".join([str((3 - i)%3) for i in digits(n, 3)[1:]]), 3) # Indranil Ghosh, Jun 06 2017
A289816
The second of a pair of coprime numbers whose factorizations depend on the ternary representation of n (See Comments for precise definition).
Original entry on oeis.org
1, 1, 2, 1, 1, 2, 3, 3, 6, 1, 1, 2, 1, 1, 2, 3, 3, 6, 4, 5, 10, 4, 5, 10, 12, 15, 30, 1, 1, 2, 1, 1, 2, 3, 3, 6, 1, 1, 2, 1, 1, 2, 3, 3, 6, 4, 5, 10, 4, 5, 10, 12, 15, 30, 5, 7, 14, 5, 7, 14, 15, 21, 42, 5, 7, 14, 5, 7, 14, 15, 21, 42, 20, 35, 70, 20, 35, 70
Offset: 0
For n=42:
- 42 = 2*3^1 + 1*3^2 + 1*3^3,
- S(0) = { 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, ... },
- S(1) = S(0) \ { 3^(1+j) with j > 0 }
= { 2, 3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 25, 29, ... },
- S(2) = S(1) \ { 2^(2+j) with j > 0 }
= { 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 25, 29, ... },
- S(3) = S(2) \ { 5^(1+j) with j > 0 }
= { 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, ... },
- a(42) = 3.
-
a(n) = my (v=1, x=1); \
for (o=2, oo, \
if (n==0, return (v)); \
if (gcd(x,o)==1 && omega(o)==1, \
if (n % 3, x *= o); \
if (n % 3==2, v *= o); \
n \= 3; \
); \
);
-
from sympy import gcd, primefactors
def omega(n): return 0 if n==1 else len(primefactors(n))
def a(n):
v, x, o = 1, 1, 2
while True:
if n==0: return v
if gcd(x, o)==1 and omega(o)==1:
if n%3: x*=o
if n%3==2:v*=o
n //= 3
o+=1
print([a(n) for n in range(101)]) # Indranil Ghosh, Aug 02 2017
Showing 1-4 of 4 results.
Comments