cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A195264 Iterate x -> A080670(x) (replace x with the concatenation of the primes and exponents in its prime factorization) starting at n until reach 1 or a prime (which is then the value of a(n)); or a(n) = -1 if a prime is never reached.

Original entry on oeis.org

1, 2, 3, 211, 5, 23, 7, 23, 2213, 2213, 11, 223, 13, 311, 1129, 233, 17, 17137, 19
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2011, based on discussions on the Sequence Fans Mailing List by Alonso del Arte, Franklin T. Adams-Watters, D. S. McNeil, Charles R Greathouse IV, Sean A. Irvine, and others

Keywords

Comments

J. H. Conway offered $1000 for a proof or disproof for his conjecture that every number eventually reaches a 1 or a prime - see OEIS50 link. - N. J. A. Sloane, Oct 15 2014
However, James Davis has discovered that a(13532385396179) = -1. This number D = 13532385396179 = (1407*10^5+1)*96179 = 13*53^2*3853*96179 is clearly fixed by the map x -> A080670(x), and so never reaches 1 or a prime. - Hans Havermann, Jun 05 2017
The number n = 3^6 * 2331961591220850480109739369 * 21313644799483579440006455257 is a near-miss for another nonprime fixed point. Unfortunately here the last two factors only look like primes (they have no prime divisors < 10), but in fact both are composite. - Robert Gerbicz, Jun 07 2017
The number D' = 13^532385396179 maps to D and so is a much larger number with a(D') = -1. Repeating this process (by finding a prime prefix of D') should lead to an infinite sequence of counterexamples to Conway's conjecture. - Hans Havermann, Jun 09 2017
The first 47 digits of D' form a prime P = 68971066936841703995076128866117893410448319579, so if Q denotes the remaining digits of 13^532385396179 then D'' = P^Q is another counterexample. - Robert Gerbicz, Jun 10 2017
This sequence is different from A037274. Here 8 = 2^3 -> 23 (a prime), whereas in A037274 8 = 2^3 -> 222 -> ... -> 3331113965338635107 (a prime). - N. J. A. Sloane, Oct 12 2014
The value of a(20) is presently unknown (see A195265).

Examples

			4 = 2^2 -> 22 =2*11 -> 211, prime, so a(4) = 211.
9 = 3^2 -> 32 = 2^5 -> 25 = 5^2 -> 52 = 2^2*13 -> 2213, prime, so a(9)=2213.
		

Crossrefs

A variant of the home primes, A037271. Cf. A080670, A195265 (trajectory of 20), A195266 (trajectory of 105), A230305, A084318. A230627 (base-2), A290329 (base-3)

Programs

  • Mathematica
    f[1] := 1; f[n_] := Block[{p = Flatten[FactorInteger[n]]}, k = Length[p]; While[k > 0, If[p[[k]] == 1, p = Delete[p, k]]; k--]; FromDigits[Flatten[IntegerDigits[p]]]]; Table[FixedPoint[f, n], {n, 19}] (* Alonso del Arte, based on the program for A080670, Sep 14 2011 *)
    fn[n_] := FromDigits[Flatten[IntegerDigits[DeleteCases[Flatten[
    FactorInteger[n]], 1]]]];
    Table[NestWhile[fn, n, # != 1 && ! PrimeQ[#] &], {n, 19}] (* Robert Price, Mar 15 2020 *)
  • PARI
    a(n)={n>1 && while(!ispseudoprime(n), n=A080670(n));n} \\ M. F. Hasler, Oct 12 2014

A290328 Iterate the map x -> A289667(x) starting at n; sequence gives number of steps to reach a prime, or -1 if no prime is ever reached.

Original entry on oeis.org

0, 0, 4, 0, 3, 0, 3, 1, 1, 0, 7, 0, 2, 2, 20, 0, 19, 0, 5, 2, 19, 0, 4, 1, 1, 52, 1, 0, 51, 0, 1, 2, 1, 2, 1, 0, 1, 4, 51, 0, 2, 0, 1, 20, 5, 0
Offset: 2

Views

Author

Chai Wah Wu, Jul 27 2017

Keywords

Comments

Base 3 analog of A230626. See A290350 for the trajectory of 48.
If a(48) != -1, then a(48) > 120. - Chai Wah Wu, Jul 29 2017

Crossrefs

Programs

  • Mathematica
    Table[-1 + Length@ NestWhileList[FromDigits[#, 3] &@ Flatten@ Map[IntegerDigits[#, 3] &, FactorInteger[#] /. {p_, e_} /; p > 0 :> If[e == 1, p, {p, e}]] &, n, ! PrimeQ@ # &], {n, 2, 47}] (* Michael De Vlieger, Jul 29 2017 *)

A290350 Trajectory of 48 under the map x -> A289667(x).

Original entry on oeis.org

48, 201, 310, 1894, 5321, 12706, 19475, 38759, 16151, 23120, 16496, 49145, 108244, 499453, 3436777, 10278262, 33836945, 240512002, 913716328, 939389234, 3295603306, 27693125191, 43752137122, 225022142762, 2016929822398, 21026295155804, 66261353668847, 675731396348989
Offset: 1

Views

Author

Chai Wah Wu, Jul 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    NestList[FromDigits[#, 3] &@ Flatten@ Map[IntegerDigits[#, 3] &, FactorInteger[#] /. {p_, e_} /; p > 0 :> If[e == 1, p, {p, e}]] &, 48, 27] (* Michael De Vlieger, Jul 29 2017 *)
Showing 1-3 of 3 results.