A290380 Analog of Motzkin sums for Coxeter type D.
1, 4, 12, 36, 105, 306, 889, 2584, 7515, 21880, 63778, 186132, 543855, 1590876, 4658580, 13655472, 40065243, 117654876, 345786396, 1017040380, 2993498739, 8816790906, 25984489545, 76625467128, 226085062525, 667415280376, 1971209865654, 5824651789852
Offset: 3
Keywords
Links
- Christos A. Athanasiadis and Christina Savvidou, The Local h-Vector of the Cluster Subdivision of a Simplex, Séminaire Lotharingien de Combinatoire 66 (2012), Article B66c.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<5, [0$2, 1, 4][n], ((n-2)*(2*n-3)*(n-4)*a(n-1)+3*(n-2)*(n-3)^2* a(n-2))/((n-3)*(n-4)*n)) end: seq(a(n), n=3..35); # Alois P. Heinz, Jul 28 2017
-
Mathematica
Table[Sum[(n - 2)/i*Binomial[2i - 2, i - 1] Binomial[n - 2, 2i - 2], {i, n/2}], {n, 3, 50}] (* Indranil Ghosh, Jul 29 2017 *) a[n_] := (n - 2) Hypergeometric2F1[1 - n/2, 3/2 - n/2, 2, 4]; Table[a[n], {n, 3, 30}] (* Peter Luschny, Jan 23 2018 *)
-
Sage
def A290380(n): return sum(ZZ(n - 2) / i * binomial(2 * i - 2, i - 1) * binomial(n - 2, 2 * i - 2) for i in range(1, n // 2 + 1))
Formula
a(n) = Sum_{i=1..n/2} (n-2)/i*binomial(2*i-2, i-1)*binomial(n-2, 2*i-2).
From Peter Luschny, Jan 23 2018: (Start)
a(n) = (n - 2)*hypergeom([1 - n/2, 3/2 - n/2], [2], 4).
a(n) = (-1)^n (n - 2)*hypergeom([2 - n, 3/2], [3], 4).
a(n) = (n - 2)*A001006(n-2). (End)
G.f.: ((x-2)*sqrt(-3*x^2-2*x+1)-3*x^2-3*x+2)/(2*sqrt(-3*x^2-2*x+1)). - Vladimir Kruchinin, Jun 21 2024
Comments