cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290380 Analog of Motzkin sums for Coxeter type D.

Original entry on oeis.org

1, 4, 12, 36, 105, 306, 889, 2584, 7515, 21880, 63778, 186132, 543855, 1590876, 4658580, 13655472, 40065243, 117654876, 345786396, 1017040380, 2993498739, 8816790906, 25984489545, 76625467128, 226085062525, 667415280376, 1971209865654, 5824651789852
Offset: 3

Views

Author

F. Chapoton, Jul 28 2017

Keywords

Comments

See proposition 3.3 of the Athanasiadis-Savvidou reference.

Crossrefs

Cf. A001006, A005043 (type A), A246437 (type B).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [0$2, 1, 4][n],
          ((n-2)*(2*n-3)*(n-4)*a(n-1)+3*(n-2)*(n-3)^2*
          a(n-2))/((n-3)*(n-4)*n))
        end:
    seq(a(n), n=3..35);  # Alois P. Heinz, Jul 28 2017
  • Mathematica
    Table[Sum[(n - 2)/i*Binomial[2i - 2, i - 1] Binomial[n - 2, 2i - 2], {i, n/2}], {n, 3, 50}] (* Indranil Ghosh, Jul 29 2017 *)
    a[n_] := (n - 2) Hypergeometric2F1[1 - n/2, 3/2 - n/2, 2, 4];
    Table[a[n], {n, 3, 30}] (* Peter Luschny, Jan 23 2018 *)
  • Sage
    def A290380(n):
        return sum(ZZ(n - 2) / i * binomial(2 * i - 2, i - 1) *
                   binomial(n - 2, 2 * i - 2)
                   for i in range(1, n // 2 + 1))

Formula

a(n) = Sum_{i=1..n/2} (n-2)/i*binomial(2*i-2, i-1)*binomial(n-2, 2*i-2).
From Peter Luschny, Jan 23 2018: (Start)
a(n) = (n - 2)*hypergeom([1 - n/2, 3/2 - n/2], [2], 4).
a(n) = (-1)^n (n - 2)*hypergeom([2 - n, 3/2], [3], 4).
a(n) = (n - 2)*A001006(n-2). (End)
G.f.: ((x-2)*sqrt(-3*x^2-2*x+1)-3*x^2-3*x+2)/(2*sqrt(-3*x^2-2*x+1)). - Vladimir Kruchinin, Jun 21 2024