cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A298300 Analog of Motzkin numbers for Coxeter type D.

Original entry on oeis.org

1, 4, 11, 31, 87, 246, 699, 1996, 5723, 16468, 47533, 137567, 399073, 1160082, 3378483, 9855207, 28790403, 84218052, 246651729, 723165765, 2122391109, 6234634266, 18330019029, 53932825926, 158802303429, 467898288676, 1379485436579, 4069450219561
Offset: 2

Views

Author

F. Chapoton, Jan 16 2018

Keywords

Crossrefs

Cf. A001006 (type A), A002426 (type B), A290380.

Programs

  • Maple
    A298300 := proc(n)
        hypergeom([(1-n)/2,1-n/2],[1],4)+(n-2)*hypergeom([1-n/2,3/2-n/2],[2],4);
        simplify(%) ;
    end proc:
    seq(A298300(n),n=2..40) ; # R. J. Mathar, Jul 27 2022
  • Mathematica
    b[n_] := Hypergeometric2F1[(1 - n)/2, 1 - n/2, 1, 4];
    c[n_] := (n-2) Hypergeometric2F1[1 - n/2, 3/2 - n/2, 2, 4];
    Table[b[n] + c[n], {n, 2, 29}] (* Peter Luschny, Jan 23 2018 *)
  • Sage
    def a(n):
         return (sum(ZZ(n - 2) / i * binomial(2 * i - 2, i - 1) *
             binomial(n - 2, 2 * i - 2)
                     for i in range(1, floor(n / 2) + 1)) +
                 sum(binomial(n - 1, k) * binomial(n - 1 - k, k)
                     for k in range(floor((n - 1) / 2) + 1)))

Formula

a(n) = A002426(n-1) + A290380(n) (the latter being extended by A290380(2)=0).
Conjectural algebraic equation: 3*t+2+(3*t^2+5*t-2)*f(t)+(3*t^3-t^2)*f(t)^2 = 0.
From Peter Luschny, Jan 23 2018: (Start)
a(n) = hypergeom([(1-n)/2,1-n/2],[1],4)+(n-2)*hypergeom([1-n/2,3/2-n/2],[2],4).
a(n) = G(n-1,1-n,-1/2) + G(n-2,1-n,-1/2)*(n-2)/(n-1) where G(n,a,x) denotes the n-th Gegenbauer polynomial. (End)
D-finite with recurrence +2*n*a(n) +(-7*n+6)*a(n-1) +9*(n-4)*a(n-3)=0. - R. J. Mathar, Jul 27 2022

A298609 Polynomials related to the Motzkin sums for Coxeter type D, T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 9, 0, 3, 0, 8, 0, 24, 0, 4, 0, 0, 50, 0, 50, 0, 5, 0, 30, 0, 180, 0, 90, 0, 6, 0, 0, 245, 0, 490, 0, 147, 0, 7, 0, 112, 0, 1120, 0, 1120, 0, 224, 0, 8, 0, 0, 1134, 0, 3780, 0, 2268, 0, 324, 0, 9, 0, 420, 0, 6300, 0, 10500, 0, 4200, 0, 450, 0, 10, 0
Offset: 0

Views

Author

Peter Luschny, Jan 23 2018

Keywords

Comments

The polynomials evaluated at x = 1 give the analog of the Motzkin sums for Coxeter type D (see A290380 (with a shift in the indexing)).

Examples

			The first few polynomials are:
p0(x) = 0;
p1(x) = 0;
p2(x) = x;
p3(x) = 2 + 2*x^2;
p4(x) = 9*x + 3*x^3;
p5(x) = 8 + 24*x^2 + 4*x^4;
p6(x) = 50*x + 50*x^3 + 5*x^5;
p7(x) = 30 + 180*x^2 + 90*x^4 + 6*x^6;
p8(x) = 245*x + 490*x^3 + 147*x^5 + 7*x^7;
p9(x) = 112 + 1120*x^2 + 1120*x^4 + 224*x^6 + 8*x^8;
The triangle of coefficients extended by the main diagonal with zeros starts:
[0][  0]
[1][  0,    0]
[2][  0,    1,    0]
[3][  2,    0,    2,    0]
[4][  0,    9,    0,    3,    0]
[5][  8,    0,   24,    0,    4,    0]
[6][  0,   50,    0,   50,    0,    5,   0]
[7][ 30,    0,  180,    0,   90,    0,   6,  0]
[8][  0,  245,    0,  490,    0,  147,   0,  7,  0]
[9][112,    0, 1120,    0, 1120,    0, 224,  0,  8,  0]
		

Crossrefs

Programs

  • Maple
    A298609Poly := n -> `if`(n<=1, 0, binomial(2*n, n)*((n-1)/(n+1))*hypergeom([1-n, -n-1], [-n+1/2], 1/2-x/4)):
    A298609Row := n -> if n=0 then 0 elif n=1 then 0,0 else op(PolynomialTools:-CoefficientList(simplify(A298609Poly(n)), x)),0 fi:
    seq(A298609Row(n), n=0..11);
  • Mathematica
    P298609[n_] := If[n <= 1, 0, GegenbauerC[n - 1, -n, -x/2] (n - 1)/n];
    Flatten[ Join[ {{0}, {0, 0}},
      Table[ Join[ CoefficientList[ P298609[n], x], {0}], {n, 2, 10}]]]

Formula

A298608(n,k) = A109187(n,k) + T(n,k).
The polynomials are defined by p(0, x) = p(1, x) = 0 and for n >= 2 by p(n, x) = G(n - 1, -n, -x/2)*(n - 1)/n where G(n, a, x) denotes the n-th Gegenbauer polynomial.
p(n, x) = Catalan(n)*(n-1)*hypergeom([1-n, -n-1], [-n+1/2], 1/2-x/4) for n >= 2.
Showing 1-2 of 2 results.