cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290575 Apéry-like numbers Sum_{k=0..n} (C(n,k) * C(2*k,n))^2.

Original entry on oeis.org

1, 4, 40, 544, 8536, 145504, 2618176, 48943360, 941244376, 18502137184, 370091343040, 7508629231360, 154145664817600, 3196100636757760, 66834662101834240, 1407913577733228544, 29849617614785770456, 636440695668355742560, 13638210075999240396736, 293565508750164008207104, 6344596821114216520841536
Offset: 0

Views

Author

Hugo Pfoertner, Aug 06 2017

Keywords

Comments

Sequence epsilon in Almkvist, Straten, Zudilin article.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    Table[Sum[(Binomial[n, k]*Binomial[2*k, n])^2, {k, 0, n}], {n, 0, 25}] (* G. C. Greubel, Oct 23 2017 *)
    a[n_] := Binomial[2 n, n]^2 HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1, 1/2 - n, 1/2 - n}, 1];
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 10 2022 *)
  • PARI
    C=binomial; a(n) = sum (k=0, n, C(n,k)^2 * C(k+k,n)^2);

Formula

a(-1)=0, a(0)=1, a(n+1) = ((2*n+1)*(12*n^2+12*n+4)*a(n)-16*n^3*a(n-1))/(n+1)^3.
a(n) = Sum_{k=ceiling(n/2)..n} binomial(n,k)^2*binomial(2*k,n)^2. [Gorodetsky] - Michel Marcus, Feb 25 2021
a(n) ~ 2^(2*n - 3/4) * (1 + sqrt(2))^(2*n+1) / (Pi*n)^(3/2). - Vaclav Kotesovec, Jul 10 2021
From Peter Bala, Apr 10 2022: (Start)
The g.f. is the diagonal of the rational function 1/(1 - (x + y + z + t) + 2*(x*y*z + x*y*t + x*z*t + y*z*t) + 4*x*y*z*t) (Straub and Zudilin)
The g.f. appears to be the diagonal of the rational function 1/(1 - x - y + z - t - 2*(x*z + y*z + z*t) + 4*(x*y*t + x*z*t) + 8*x*y*z*t).
If true, then a(n) = [(x*y*z)^n] ( (x + y + z + 1)*(x + y + z - 1)*(x + y - z - 1)*(x - y - z + 1) )^n . (End)
a(n) = binomial(2*n, n)^2 * hypergeom([1/2-n/2, 1/2-n/2, -n/2, -n/2], [1, 1/2-n, 1/2-n], 1). - Peter Luschny, Apr 10 2022
G.f.: hypergeom([1/8, 3/8],[1], 256*x^2 / (1 - 4*x)^4)^2 / (1 - 4*x). - Mark van Hoeij, Nov 12 2022
a(n) = [(w*x*y*z)^n] ((w+z)*(x+z)*(y+z)*(w+x+y+z))^n = Sum_{0 <= j <= i <= n} binomial(n,i)^2*binomial(i,j)^2*binomial(n+j,i). - Jeremy Tan, Mar 28 2024