cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A081494 Start with Pascal's triangle; form a triangle by sliding down n steps from top on both sides and including the horizontal row, deleting the inner numbers; a(n) = sum of entries on perimeter of triangle.

Original entry on oeis.org

1, 3, 7, 13, 23, 41, 75, 141, 271, 529, 1043, 2069, 4119, 8217, 16411, 32797, 65567, 131105, 262179, 524325, 1048615, 2097193, 4194347, 8388653, 16777263, 33554481, 67108915, 134217781, 268435511, 536870969, 1073741883, 2147483709
Offset: 1

Views

Author

Amarnath Murthy, Mar 25 2003

Keywords

Examples

			The triangle pertaining to n = 4 is obtained from the solid triangle
        1
      1   1
    1   2   1
  1   3   3   1
giving
        1
      1   1
    1       1
  1   3   3   1
and the sum of all the numbers is 13, so a(4) = 13.
		

Crossrefs

First differences of A290707.

Programs

  • Maple
    restart:a:= proc(n) option remember; if n=0 then 1 else add((binomial (n,j)+2), j=0..n-1) fi end: seq (a(n), n=0..31); # Zerinvary Lajos, Mar 29 2009

Formula

For n > 1, a(n) = A061761(n-1). - David Wasserman, Jun 03 2004

Extensions

Corrected and extended by David Wasserman, Jun 03 2004

A290818 Array read by antidiagonals: T(m,n) = number of irredundant sets in the lattice (rook) graph K_m X K_n.

Original entry on oeis.org

2, 3, 3, 4, 11, 4, 5, 24, 24, 5, 6, 47, 94, 47, 6, 7, 88, 272, 272, 88, 7, 8, 163, 774, 1185, 774, 163, 8, 9, 304, 2230, 4280, 4280, 2230, 304, 9, 10, 575, 6542, 15781, 20106, 15781, 6542, 575, 10, 11, 1104, 19452, 60604, 88512, 88512, 60604, 19452, 1104, 11
Offset: 1

Views

Author

Andrew Howroyd, Aug 11 2017

Keywords

Examples

			Array begins:
===============================================================
m\n| 1   2     3      4       5        6        7         8
---+-----------------------------------------------------------
1  | 2   3     4      5       6        7        8         9 ...
2  | 3  11    24     47      88      163      304       575 ...
3  | 4  24    94    272     774     2230     6542     19452 ...
4  | 5  47   272   1185    4280    15781    60604    240073 ...
5  | 6  88   774   4280   20106    88512   400728   1879744 ...
6  | 7 163  2230  15781   88512   453271  2326534  12363513 ...
7  | 8 304  6542  60604  400728  2326534 13169346  76446456 ...
8  | 9 575 19452 240073 1879744 12363513 76446456 476777153 ...
...
		

Crossrefs

Row 2 is A290707 for n > 1.
Main diagonal is A290586.

Programs

  • Mathematica
    s[n_, k_]:=Sum[(-1)^i*Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}];
    c[m_, n_, x_]:=Sum[Binomial[m, i] (n^i - n!*StirlingS2[i, n])*x^i, {i, 0, m - 1}];
    p[m_, n_, x_]:=Sum[Sum[Binomial[m, k] Binomial[n, r]* k!*s[r, k]*x^r*c[m - k, n - r, x], {r, 2k, n - 1}], {k,0, m - 1}];
    b[m_, n_, x_]:=m^n*x^n + n^m*x^m - If[n<=m, n!*x^m*StirlingS2[m, n], m!*x^n*StirlingS2[n, m]];
    T[m_, n_]:= b[m, n, 1] + p[m, n, 1];
    Table[T[n, m -n + 1], {m, 10}, {n, m}]//Flatten
    (* Indranil Ghosh, Aug 12 2017, after PARI code *)
  • PARI
    \\ See A. Howroyd note in A290586 for explanation.
    s(n,k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
    c(m,n,x)=sum(i=0, m-1, binomial(m, i) * (n^i - n!*stirling(i, n, 2))*x^i);
    p(m,n,x)={sum(k=0, m-1, sum(r=2*k, n-1, binomial(m, k) * binomial(n, r) * k! * s(r, k) * x^r * c(m-k, n-r, x) ))}
    b(m,n,x) = m^n*x^n + n^m*x^m - if(n<=m, n!*x^m*stirling(m, n, 2), m!*x^n*stirling(n, m, 2));
    T(m,n) = b(m,n,1) + p(m,n,1);
    for(m=1,10,for(n=1,m,print1(T(n,m-n+1),", ")));

Formula

T(m,n) = A290632(m, n) + Sum_{k=0..m-1} Sum_{r=2*k..n-1} binomial(m,k) * binomial(n,r) * k! * A008299(r,k) * c(m-k,n-r) where c(m,n) = Sum_{i=0..m-1} binomial(n,i) * (n^i - n!*stirling2(i, n)).

A290709 Number of irredundant sets in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

4, 22, 49, 94, 169, 298, 529, 958, 1777, 3370, 6505, 12718, 25081, 49738, 98977, 197374, 394081, 787402, 1573945, 3146926, 6292777, 12584362, 25167409, 50333374, 100665169, 201328618, 402655369, 805308718, 1610615257, 3221228170, 6442453825, 12884904958
Offset: 1

Views

Author

Eric W. Weisstein, Aug 09 2017

Keywords

Comments

When n > 1, the nonempty irredundant sets are those consisting of either any number of vertices from a single partition or otherwise exactly two vertices from different partitions. - Andrew Howroyd, Aug 10 2017

Crossrefs

Cf. A290707.

Programs

  • Mathematica
    Table[If[n == 1, 4, 3 (2^n + n^2) - 2], {n, 20}]
    Join[{4}, LinearRecurrence[{5, -9, 7, -2}, {22, 49, 94, 169}, 20]]
    CoefficientList[Series[(4 + 2 x - 25 x^2 + 19 x^3 - 6 x^4)/((-1 + x)^3 (-1 + 2 x)), {x, 0, 20}], x]
  • PARI
    a(n) = if(n==1, 4, 3*(2^n + n^2) - 2); \\ Andrew Howroyd, Aug 10 2017

Formula

a(n) = 3*(2^n + n^2) - 2 for n > 1. - Andrew Howroyd, Aug 10 2017
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n > 5.
G.f.: (x (4 + 2 x - 25 x^2 + 19 x^3 - 6 x^4))/((-1 + x)^3 (-1 + 2 x)).

Extensions

a(7)-a(32) from Andrew Howroyd, Aug 10 2017
Showing 1-3 of 3 results.