cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A309450 The successive approximations up to 7^n for 7-adic integer 2^(1/5).

Original entry on oeis.org

0, 4, 46, 95, 1124, 15530, 82758, 435705, 4553420, 27612624, 269734266, 1682110511, 9591417483, 9591417483, 9591417483, 4078929854577, 23069175894349, 122767967603152, 1053290023551980, 9195358013104225, 77588729125343083, 237173261720567085, 1354264989887135099
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2019

Keywords

Examples

			a(1) = (   4)_7 = 4,
a(2) = (  64)_7 = 46,
a(3) = ( 164)_7 = 95,
a(4) = (3164)_7 = 1124.
		

Crossrefs

Cf. A309445.
Expansions of p-adic integers:
A290567 (5-adic, 2^(1/3));
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A309451 (7-adic, 3^(1/5));
A309452 (7-adic, 4^(1/5));
A309453 (7-adic, 5^(1/5));
A309454 (7-adic, 6^(1/5)).

Programs

  • Maple
    A:= op([1,3],padic:-rootp(x^5 -2,  7, 25)):
    seq(add(A[i]*10^(i-1),i=1..n),n=0..25); # Robert Israel, Aug 04 2019
  • PARI
    {a(n) = truncate((2+O(7^n))^(1/5))}

Formula

a(0) = 0 and a(1) = 4, a(n) = a(n-1) + (a(n-1)^5 - 2) mod 7^n for n > 1.

A290804 One of the two successive approximations up to 7^n for the 7-adic integer sqrt(-3). These are the numbers congruent to 5 mod 7 (except for the initial 0).

Original entry on oeis.org

0, 5, 12, 306, 306, 2707, 69935, 658180, 4775895, 10540696, 10540696, 575491194, 4530144680, 59895293484, 544340345519, 1900786491217, 20891032530989, 87356893670191, 319987407657398, 10090468995120092, 44287154551239521, 203871687146463523
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2017

Keywords

Comments

x = ...410615,
x^2 = ...666664 = -3.

Examples

			a(1) =     5_7 = 5,
a(2) =    15_7 = 12,
a(3) =   615_7 = 306,
a(4) =   615_7 = 306,
a(5) = 10615_7 = 2707.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n, 7^n - truncate(sqrt(-3+O(7^(n)))), 0)

Formula

a(0) = 0 and a(1) = 5, a(n) = a(n-1) + 2 * (a(n-1)^2 + 3) mod 7^n for n > 1.
If n > 0, a(n) = 7^n - A290803(n).
a(n) = L(7^n,5) (mod 7^n) = ( ((5 + sqrt(29))/2)^(7^n) + ((5 - sqrt(29))/2)^(7^n) ) (mod 7^n), where L(n,x) denotes the n-th Lucas polynomial of A114525. - Peter Bala, Nov 28 2022

A309451 The successive approximations up to 7^n for 7-adic integer 3^(1/5).

Original entry on oeis.org

0, 5, 26, 75, 1104, 3505, 20312, 20312, 4961570, 28020774, 229788809, 512264058, 2489590801, 71696026806, 71696026806, 71696026806, 19061942066578, 218459525484184, 451090039471391
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2019

Keywords

Examples

			a(1) = (   5)_7 = 5,
a(2) = (  35)_7 = 26,
a(3) = ( 135)_7 = 75,
a(4) = (3135)_7 = 1104.
		

Crossrefs

Cf. A309446.
Expansions of p-adic integers:
A290568 (5-adic, 3^(1/3));
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A309450 (7-adic, 2^(1/5));
A309452 (7-adic, 4^(1/5));
A309453 (7-adic, 5^(1/5));
A309454 (7-adic, 6^(1/5)).

Programs

  • PARI
    {a(n) = truncate((3+O(7^n))^(1/5))}

Formula

a(0) = 0 and a(1) = 5, a(n) = a(n-1) + 2 * (a(n-1)^5 - 3) mod 7^n for n > 1.

A309452 The successive approximations up to 7^n for 7-adic integer 4^(1/5).

Original entry on oeis.org

0, 2, 9, 107, 450, 450, 67678, 655923, 2303009, 13832611, 54186218, 1749037712, 13612998170, 27454285371, 124343295778, 4193681732872, 18436366262701, 217833949680307, 1380986519616342, 3009400117526791, 3009400117526791, 162593932712750793, 3513869117212454835
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2019

Keywords

Examples

			a(1) = (   2)_7 = 2,
a(2) = (  12)_7 = 9,
a(3) = ( 212)_7 = 107,
a(4) = (1212)_7 = 450.
		

Crossrefs

Cf. A309447.
Expansions of p-adic integers:
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A309450 (7-adic, 2^(1/5));
A309451 (7-adic, 3^(1/5));
A309453 (7-adic, 5^(1/5));
A309454 (7-adic, 6^(1/5)).

Programs

  • PARI
    {a(n) = truncate((4+O(7^n))^(1/5))}

Formula

a(0) = 0 and a(1) = 2, a(n) = a(n-1) + 2 * (a(n-1)^5 - 4) mod 7^n for n > 1.

A309453 The successive approximations up to 7^n for 7-adic integer 5^(1/5).

Original entry on oeis.org

0, 3, 45, 339, 1368, 8571, 42185, 630430, 4748145, 27807349, 27807349, 1722658843, 13586619301, 41269193703, 235047214517, 2269716433064, 30755085492722, 230152668910328, 928044210871949, 2556457808782398, 36753143364901827, 196337675960125829, 2430521132293261857
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2019

Keywords

Examples

			a(1) = (   3)_7 = 3,
a(2) = (  63)_7 = 45,
a(3) = ( 663)_7 = 339,
a(4) = (3663)_7 = 1368.
		

Crossrefs

Cf. A309448.
Expansions of p-adic integers:
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A309450 (7-adic, 2^(1/5));
A309451 (7-adic, 3^(1/5));
A309452 (7-adic, 4^(1/5));
A309454 (7-adic, 6^(1/5)).

Programs

  • PARI
    {a(n) = truncate((5+O(7^n))^(1/5))}

Formula

a(0) = 0 and a(1) = 3, a(n) = a(n-1) + (a(n-1)^5 - 5) mod 7^n for n > 1.

A309454 The successive approximations up to 7^n for 7-adic integer 6^(1/5).

Original entry on oeis.org

0, 6, 20, 265, 1980, 11584, 11584, 246882, 1070425, 29894430, 29894430, 1159795426, 9069102398, 9069102398, 202847123212, 2237516341759, 2237516341759, 201635099759365, 1132157155708193, 6017397949439540, 17416293134812683, 496169890920484689, 1613261619087052703
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2019

Keywords

Examples

			a(1) = (   6)_7 = 6,
a(2) = (  26)_7 = 20,
a(3) = ( 526)_7 = 265,
a(4) = (5526)_7 = 1980.
		

Crossrefs

Cf. A309449.
Expansions of p-adic integers:
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A309450 (7-adic, 2^(1/5));
A309451 (7-adic, 3^(1/5));
A309452 (7-adic, 4^(1/5));
A309453 (7-adic, 5^(1/5)).

Programs

  • PARI
    {a(n) = truncate((6+O(7^n))^(1/5))}

Formula

a(0) = 0 and a(1) = 6, a(n) = a(n-1) + 4 * (a(n-1)^5 - 6) mod 7^n for n > 1.

A290796 Coefficients in 7-adic expansion of sqrt(-3).

Original entry on oeis.org

2, 5, 0, 6, 5, 2, 1, 1, 5, 6, 4, 4, 2, 1, 4, 2, 4, 5, 0, 3, 4, 0, 3, 5, 2, 0, 5, 3, 0, 5, 6, 2, 0, 0, 1, 2, 2, 6, 2, 5, 5, 1, 0, 3, 3, 4, 3, 2, 0, 5, 3, 0, 5, 5, 0, 0, 2, 5, 4, 4, 2, 3, 6, 5, 5, 2, 6, 0, 4, 6, 2, 1, 3, 3, 1, 3, 2, 0, 5, 1, 1, 5, 4, 1, 4, 1, 6, 4
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2017

Keywords

Crossrefs

Programs

  • PARI
    Vecrev(digits(lift(sqrt(-3+O(7^99))), 7))

A318960 One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 1 (mod 4) case.

Original entry on oeis.org

1, 5, 5, 21, 53, 53, 181, 181, 181, 181, 181, 181, 181, 16565, 49333, 49333, 49333, 49333, 573621, 1622197, 1622197, 1622197, 10010805, 10010805, 10010805, 77119669, 211337397, 479772853, 479772853, 479772853, 2627256501, 6922223797, 15512158389, 15512158389
Offset: 2

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

a(n) is the unique number k in [1, 2^n] and congruent to 1 (mod 4) such that k^2 + 7 is divisible by 2^(n+1).
The 2-adic integers are very different from p-adic ones where p is an odd prime. For example, provided that there is at least one solution, the number of solutions to x^n = a over p-adic integers is gcd(n, p-1) for odd primes p and gcd(n, 2) for p = 2. For odd primes p, x^2 = a is solvable iff a is a quadratic residue modulo p, while for p = 2 it's solvable iff a == 1 (mod 8). If gcd(n, p-1) > 1 and gcd(a, p) = 1, then the solutions to x^n = a differ starting at the rightmost digit for odd primes p, while for p = 2 they differ starting at the next-to-rightmost digit. As a result, the formulas and the program here are different from those in other entries related to p-adic integers.

Examples

			The unique number k in [1, 4] and congruent to 1 modulo 4 such that k^2 + 7 is divisible by 8 is 1, so a(2) = 1.
a(2)^2 + 7 = 8 which is not divisible by 16, so a(3) = a(2) + 2^2 = 5.
a(3)^2 + 7 = 32 which is divisible by 32, so a(4) = a(3) = 5.
a(4)^2 + 7 = 32 which is divisible by 64, so a(5) = a(4) + 2^4 = 21.
a(5)^2 + 7 = 448 which is divisible by 128, so a(6) = a(5) + 2^5 = 53.
...
		

Crossrefs

Cf. A318962.
Expansions of p-adic integers:
this sequence, A318961 (2-adic, sqrt(-7));
A268924, A271222 (3-adic, sqrt(-2));
A268922, A269590 (5-adic, sqrt(-4));
A048898, A048899 (5-adic, sqrt(-1));
A290567 (5-adic, 2^(1/3));
A290568 (5-adic, 3^(1/3));
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A286840, A286841 (13-adic, sqrt(-1));
A286877, A286878 (17-adic, sqrt(-1)).
Also expansions of 10-adic integers:
A007185, A010690 (nontrivial roots to x^2-x);
A216092, A216093, A224473, A224474 (nontrivial roots to x^3-x).

Programs

  • PARI
    a(n) = truncate(-sqrt(-7+O(2^(n+1))))

Formula

a(2) = 1; for n >= 3, a(n) = a(n-1) if a(n-1)^2 + 7 is divisible by 2^(n+1), otherwise a(n-1) + 2^(n-1).
a(n) = 2^n - A318961(n).
a(n) = Sum_{i=0..n-1} A318962(i)*2^i.

Extensions

Offset corrected by Jianing Song, Aug 28 2019

A318961 One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 3 (mod 4) case.

Original entry on oeis.org

3, 3, 11, 11, 11, 75, 75, 331, 843, 1867, 3915, 8011, 16203, 16203, 16203, 81739, 212811, 474955, 474955, 474955, 2572107, 6766411, 6766411, 23543627, 57098059, 57098059, 57098059, 57098059, 593968971, 1667710795, 1667710795, 1667710795, 1667710795, 18847579979
Offset: 2

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

a(n) is the unique number k in [1, 2^n] and congruent to 3 (mod 4) such that k^2 + 7 is divisible by 2^(n+1).
The 2-adic integers are very different from p-adic ones where p is an odd prime. For example, provided that there is at least one solution, the number of solutions to x^n = a over p-adic integers is gcd(n, p-1) for odd primes p and gcd(n, 2) for p = 2. For odd primes p, x^2 = a is solvable iff a is a quadratic residue modulo p, while for p = 2 it's solvable iff a == 1 (mod 8). If gcd(n, p-1) > 1 and gcd(a, p) = 1, then the solutions to x^n = a differ starting at the rightmost digit for odd primes p, while for p = 2 they differ starting at the next-to-rightmost digit. As a result, the formulas and the program here are different from those in other entries related to p-adic integers.

Examples

			The unique number k in [1, 4] and congruent to 3 modulo 4 such that k^2 + 7 is divisible by 8 is 3, so a(2) = 3.
a(2)^2 + 7 = 16 which is divisible by 16, so a(3) = a(2) = 3.
a(3)^2 + 7 = 16 which is not divisible by 32, so a(4) = a(3) + 2^3 = 11.
a(4)^2 + 7 = 128 which is divisible by 64, so a(5) = a(4) = 11.
a(5)^2 + 7 = 128 which is divisible by 128, so a(6) = a(5) = 11.
...
		

Crossrefs

Cf. A318963.
Expansions of p-adic integers:
A318960, this sequence (2-adic, sqrt(-7));
A268924, A271222 (3-adic, sqrt(-2));
A268922, A269590 (5-adic, sqrt(-4));
A048898, A048899 (5-adic, sqrt(-1));
A290567 (5-adic, 2^(1/3));
A290568 (5-adic, 3^(1/3));
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A286840, A286841 (13-adic, sqrt(-1));
A286877, A286878 (17-adic, sqrt(-1)).
Also expansions of 10-adic integers:
A007185, A010690 (nontrivial roots to x^2-x);
A216092, A216093, A224473, A224474 (nontrivial roots to x^3-x).

Programs

  • PARI
    a(n) = if(n==2, 3, truncate(sqrt(-7+O(2^(n+1)))))

Formula

a(2) = 3; for n >= 3, a(n) = a(n-1) if a(n-1)^2 + 7 is divisible by 2^(n+1), otherwise a(n-1) + 2^(n-1).
a(n) = 2^n - A318960(n).
a(n) = Sum_{i=0..n-1} A318963(i)*2^i.

Extensions

Offset corrected by Jianing Song, Aug 28 2019
Showing 1-9 of 9 results.