A291448 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n,x) such that Integral_{x=0..1} P'(n,x) = BernoulliMedian(n).
1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 11, 1, 13, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 11, 1, 13, 1, 1
Offset: 0
Examples
Triangle starts: [1, 1] [1, 1, 1, 3] [1, 1, 1, 3, 1, 5] [1, 1, 1, 3, 1, 5, 1, 7] [1, 1, 1, 3, 1, 5, 1, 7, 1, 1] [1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11] [1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13]
Programs
-
Maple
# See A291447.
-
Mathematica
T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j,0,n}]^2, x]; Trow[n_] := CoefficientList[T[n], x] // Denominator; Table[Trow[r], {r, 0, 7}] // Flatten
Formula
T(n,k) = Denominator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.
Comments