cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A291447 Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = BernoulliMedian(n).

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 0, 1, -1, 4, 0, 0, 0, 1, -3, 48, -12, 36, 0, 0, 0, 1, -7, 268, -176, 1968, -216, 64, 0, 0, 0, 1, -15, 240, -1580, 37140, -9900, 10400, -5760, 14400, 0, 0, 0, 1, -31, 4924, -11680, 488640, -238680, 496320, -639360, 5486400, -216000, 518400
Offset: 0

Views

Author

Peter Luschny, Aug 24 2017

Keywords

Comments

The Bernoulli median numbers are A212196/A181131. See A290694 for further comments.

Examples

			Triangle starts:
[0, 1]
[0, 0, 0, 1]
[0, 0, 0, 1, -1, 4]
[0, 0, 0, 1, -3, 48, -12, 36]
[0, 0, 0, 1, -7, 268, -176, 1968, -216, 64]
[0, 0, 0, 1, -15, 240, -1580, 37140, -9900, 10400, -5760, 14400]
The first few polynomials are:
P_0(x) = x.
P_1(x) = (1/3)*x^3.
P_2(x) = (4/5)*x^5 - x^4 + (1/3)*x^3.
P_3(x) = (36/7)*x^7 - 12*x^6 + (48/5)*x^5 - 3*x^4 + (1/3)*x^3.
P_4(x) = 64*x^9 - 216*x^8 + (1968/7)*x^7 - 176*x^6 + (268/5)*x^5 - 7*x^4 +(1/3)*x^3.
Evaluated at x = 1 this gives a decomposition of the Bernoulli median numbers:
BM(0) = 1     =    1.
BM(1) = 1/3   =  1/3.
BM(2) = 2/15  =  4/5 -   1 +    1/3.
BM(3) = 8/105 = 36/7 -  12 +   48/5 -   3 +   1/3.
BM(4) = 8/105 =   64 - 216 + 1968/7 - 176 + 268/5 - 7 + 1/3.
		

Crossrefs

Programs

  • Maple
    # The function BG_row is defined in A290694.
    seq(BG_row(2, n, "num", "val"), n=0..12);        # A212196
    seq(BG_row(2, n, "den", "val"), n=0..12);        # A181131
    seq(print(BG_row(2, n, "num", "poly")), n=0..7); # A291447 (this seq.)
    seq(print(BG_row(2, n, "den", "poly")), n=0..9); # A291448
  • Mathematica
    T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j, 0, n}]^2, x];
    Trow[n_] := CoefficientList[T[n], x] // Numerator;
    Table[Trow[r], {r, 0, 6}] // Flatten

Formula

T(n,k) = Numerator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.

A291448 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n,x) such that Integral_{x=0..1} P'(n,x) = BernoulliMedian(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 11, 1, 13, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 11, 1, 13, 1, 1
Offset: 0

Views

Author

Peter Luschny, Aug 24 2017

Keywords

Comments

See A291447 and A290694 for comments.

Examples

			Triangle starts:
[1, 1]
[1, 1, 1, 3]
[1, 1, 1, 3, 1, 5]
[1, 1, 1, 3, 1, 5, 1, 7]
[1, 1, 1, 3, 1, 5, 1, 7, 1, 1]
[1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11]
[1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13]
		

Crossrefs

Programs

  • Maple
    # See A291447.
  • Mathematica
    T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j,0,n}]^2, x];
    Trow[n_] := CoefficientList[T[n], x] // Denominator;
    Table[Trow[r], {r, 0, 7}] // Flatten

Formula

T(n,k) = Denominator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.

A290694 Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = Bernoulli(n, 1).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, -1, 2, 0, 0, 1, -2, 3, 0, 0, -1, 14, -9, 24, 0, 0, 1, -10, 75, -48, 20, 0, 0, -1, 62, -135, 312, -300, 720, 0, 0, 1, -42, 903, -1680, 2800, -2160, 630, 0, 0, -1, 254, -1449, 40824, -21000, 27360, -17640, 4480
Offset: 0

Views

Author

Peter Luschny, Aug 24 2017

Keywords

Comments

Consider a family of integrals I_m(n) = Integral_{x=0..1} P'(n, x)^m with P'(n,x) = Sum_{k=0..n}(-1)^(n-k)*Stirling2(n, k)*k!*x^k (see A278075 for the coefficients).
I_1(n) are the Bernoulli numbers A164555/A027642, I_2(n) are the Bernoulli median numbers A212196/A181131, I_3(n) are the numbers A291449/A291450.
The coefficients of the polynomials P_n(x)^m are for m = 1 A290694/A290695 and for m = 2 A291447/A291448.
Only omega(Clausen(n)) = A001221(A160014(n,1)) = A067513(n) coefficients are rational numbers if n is even. For odd n > 1 there are two rational coefficients.
Let C_k(n) = [x^k] P_n(x), k > 0 and n even. Conjecture: k is a prime factor of Clausen(n) <=> k = denominator(C_k(n)) <=> k does not divide Stirling2(n, k-1)*(k-1)!. (Note that by a comment in A019538 Stirling2(n, k-1)*(k-1)! is the number of chain topologies on an n-set having k open sets.)

Examples

			Triangle starts:
[0, 1]
[0, 0,  1]
[0, 0, -1,   2]
[0, 0,  1,  -2,    3]
[0, 0, -1,  14,   -9,  24]
[0, 0,  1, -10,   75, -48,   20]
[0, 0, -1,  62, -135, 312, -300, 720]
The first few polynomials are:
P_0(x) = x.
P_1(x) =  (1/2)*x^2.
P_2(x) = -(1/2)*x^2 + (2/3)*x^3.
P_3(x) =  (1/2)*x^2 - 2*x^3 + (3/2)*x^4.
P_4(x) = -(1/2)*x^2 + (14/3)*x^3 - 9*x^4 + (24/5)*x^5.
P_5(x) =  (1/2)*x^2 - 10*x^3 + (75/2)*x^4 - 48*x^5 + 20*x^6.
P_6(x) = -(1/2)*x^2 + (62/3)*x^3 - 135*x^4 + 312*x^5 - 300*x^6 + (720/7)*x^7.
Evaluated at x = 1 this gives an additive decomposition of the Bernoulli numbers:
B(0) =     1 =    1.
B(1) =   1/2 =  1/2.
B(2) =   1/6 = -1/2 +  2/3.
B(3) =     0 =  1/2 -    2 + 3/2.
B(4) = -1/30 = -1/2 + 14/3 -    9 + 24/5.
B(5) =     0 =  1/2 -   10 + 75/2 -   48 +  20.
B(6) =  1/42 = -1/2 + 62/3 -  135 +  312 - 300 + 720/7.
		

Crossrefs

Programs

  • Maple
    BG_row := proc(m, n, frac, val) local F, g, v;
    F := (n, x) -> add((-1)^(n-k)*Stirling2(n,k)*k!*x^k, k=0..n):
    g := x -> int(F(n,x)^m, x):
    `if`(val = "val", subs(x=1, g(x)), [seq(coeff(g(x),x,j), j=0..m*n+1)]):
    `if`(frac = "num", numer(%), denom(%)) end:
    seq(BG_row(1, n, "num", "val"), n=0..16);         # A164555
    seq(BG_row(1, n, "den", "val"), n=0..16);         # A027642
    seq(print(BG_row(1, n, "num", "poly")), n=0..12); # A290694 (this seq.)
    seq(print(BG_row(1, n, "den", "poly")), n=0..12); # A290695
    # Alternatively:
    T_row := n -> numer(PolynomialTools:-CoefficientList(add((-1)^(n-j+1)*Stirling2(n, j-1)*(j-1)!*x^j/j, j=1..n+1), x)): for n from 0 to 6 do T_row(n) od;
  • Mathematica
    T[n_, k_] := If[k > 0, Numerator[StirlingS2[n, k - 1]*(k - 1)! / k], 0]; Table[T[n, k], {n, 0, 8}, {k, 0, n+1}] // Flatten

Formula

T(n, k) = Numerator(Stirling2(n, k - 1)*(k - 1)!/k) if k > 0 else 0; for n >= 0 and 0 <= k <= n+1.

A290695 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = Bernoulli(n, 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 5, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 7, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Peter Luschny, Aug 24 2017

Keywords

Comments

See A290694 for comments.

Examples

			Triangle starts:
[1, 1]
[1, 1, 2]
[1, 1, 2, 3]
[1, 1, 2, 1, 2]
[1, 1, 2, 3, 1, 5]
[1, 1, 2, 1, 2, 1, 1]
[1, 1, 2, 3, 1, 1, 1, 7]
[1, 1, 2, 1, 2, 1, 1, 1, 1]
		

Crossrefs

Programs

  • Maple
    T_row := n -> denom(PolynomialTools:-CoefficientList(add((-1)^(n-j+1)*Stirling2(n, j-1)*(j-1)!*x^j/j, j=1..n+1), x)): for n from 0 to 7 do T_row(n) od;
  • Mathematica
    T[n_] := Denominator[CoefficientList[Sum[(-1)^(n-j+1) StirlingS2[n, j-1] (j-1)! x^j/j, {j, 1, n+1}], x]];
    Table[T[n], {n, 0, 7}] (* Jean-François Alcover, Jun 15 2019, from Maple *)

Formula

T(n, k) = Denominator([x^k] Integral (Sum_{j=0..n} (-1)^(n-j)*Stirling2(n,j)*j!* x^j)^m) for m = 1 and k = 0..n+1.

A291450 Denominators of Integral_{x=0..1} P(n, x)^3 with P(n, x) = Sum_{k=0..n}(-1)^(n-k)* Stirling2(n, k)*k!*x^k.

Original entry on oeis.org

1, 4, 140, 28, 20020, 4004, 6466460, 184756, 148728580, 29745716, 133706993420, 2431036244, 449741705140, 31885268, 670910837521540, 134182167504308, 409926521725660940, 4822664961478364, 1278006214791766460, 1921813856829724, 242081282475556183660, 4401477863191930612
Offset: 0

Views

Author

Peter Luschny, Aug 24 2017

Keywords

Comments

See A291449 and A290694 for comments.

Crossrefs

Programs

  • Maple
    # Function BG_row is defined in A290694.
    seq(BG_row(3, n, "den", "val"), n=0..20);
  • Mathematica
    P[n_, x_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k!*x^k, {k, 0, n}];
    a[n_] := Integrate[P[n, x]^3, {x, 0, 1}] // Denominator;
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jun 15 2019 *)
Showing 1-5 of 5 results.