cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291703 Number of connected dominating sets in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

7, 54, 490, 4050, 32674, 261954, 2096770, 16776450, 134216194, 1073738754, 8589928450, 68719464450, 549755789314, 4398046461954, 35184371990530, 281474976514050, 2251799813292034, 18014398508695554, 144115188074283010, 1152921504603701250
Offset: 1

Views

Author

Eric W. Weisstein, Aug 30 2017

Keywords

Comments

For n > 1, the only dominating sets that are not connected are the 3 sets consisting of all vertices from a single partition. For n > 1, the only connected sets that are not dominating are the 3n sets consisting of a single vertex. - Andrew Howroyd, Aug 30 2017

Crossrefs

Programs

  • Mathematica
    a[1] = 7; a[n_] := 2 - 3*2^n + 8^n; Array[a, 20] (* Jean-François Alcover, Oct 08 2017 *)
    (* Start from Eric W. Weisstein, Oct 12 2017 *)
    Table[Piecewise[{{7, n == 1}}, 2 - 3 2^n + 8^n], {n, 20}]
    Table[Piecewise[{{7, n == 1}}, 2 (2^(n - 1) + 1) (2^n - 1)^2], {n, 20}]
    Join[{7}, LinearRecurrence[{11, -26, 16}, {54, 490, 4050}, 20]]
    CoefficientList[Series[(-7 + 23 x - 78 x^2 + 48 x^3)/(-1 + 11 x - 26 x^2 + 16 x^3), {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n) = if(n < 2, [7][n], 8^n - 3*2^n + 2); \\ Andrew Howroyd, Aug 30 2017
    
  • PARI
    Vec(x*(7 - 23*x + 78*x^2 - 48*x^3) / ((1 - x)*(1 - 2*x)*(1 - 8*x)) + O(x^30)) \\ Colin Barker, Sep 01 2017

Formula

a(n) = A291537(n) - 3 = A290756(n) - 3*n for n > 1. - Andrew Howroyd, Aug 30 2017
From Colin Barker, Sep 01 2017: (Start)
G.f.: x*(7 - 23*x + 78*x^2 - 48*x^3) / ((1 - x)*(1 - 2*x)*(1 - 8*x)).
a(n) = 2 - 3*2^n + 8^n for n > 1.
a(n) = 11*a(n-1) - 26*a(n-2) + 16*a(n-3) for n > 4.
(End)
a(n) = A302942(n) for n > 1. - Eric W. Weisstein, Apr 16 2018
E.g.f.: 3*x + exp(x)*(2 - 3*exp(x) + exp(7*x)). - Stefano Spezia, Dec 24 2021

Extensions

a(8)-a(20) from Andrew Howroyd, Aug 30 2017

A347536 Number of minimum dominating sets in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

3, 15, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348, 6627
Offset: 1

Views

Author

Eric W. Weisstein, Sep 05 2021

Keywords

Crossrefs

Formula

a(n) = A033428(n) = 3*n^2 for n != 2.
G.f.: 3*x*(-1 - 2*x + 3*x^2 - 3*x^3 + x^4)/(-1 + x)^3.
From Stefano Spezia, Sep 06 2021: (Start)
E.g.f.: 3*x*(x + 2*exp(x)*(1 + x))/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5. (End)
Showing 1-2 of 2 results.