A291899 Numbers n such that (pod(n)/tau(n)) > (pod(k)/tau(k)) for all k < n.
1, 3, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 7560, 9240, 10080, 12600
Offset: 1
Keywords
Examples
6 is a term because pod(6)/tau(6) = 36/4 = 9 > pod(k)/tau(k) for all k < 6.
Links
- David A. Corneth, Table of n, a(n) for n = 1..200 (First 126 terms by Robert Israel)
- David A. Corneth, Conjectured first 1171 terms
Programs
-
Magma
a:=1; S:=[a]; for n in [2..60] do k:=0; flag:= true; while flag do k+:=1; if &*[d: d in Divisors(a)] / #[d: d in Divisors(a)] lt &*[d: d in Divisors(k)] / #[d: d in Divisors(k)] then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
-
Maple
f:= proc(n) local t; t:= numtheory:-tau(n); simplify(n^(t/2))/t end proc: N:= 20000: # to get all terms <= N Res:= NULL: m:= 0: for n from 1 to N do v:= f(n); if v > m then Res:= Res, n; m:= v fi od: Res; # Robert Israel, Nov 09 2017
-
Mathematica
With[{s = Array[Times @@ Divisors@ # &, 12600]}, Select[Range@ Length@ s, Function[m, AllTrue[Range[# - 1], m > s[[#]]/DivisorSigma[0, #] &]][s[[#]]/DivisorSigma[0, #]] &]] (* Michael De Vlieger, Oct 10 2017 *) DeleteDuplicates[Table[{n,Times@@Divisors[n]/DivisorSigma[0,n]},{n,13000}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Mar 03 2024 *)
Comments