A343707
a(n) = 1 + 2 * Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 3, 15, 113, 1145, 14539, 221663, 3943281, 80173345, 1833831619, 46606646175, 1302954958689, 39737420405753, 1312901360002283, 46714233470065999, 1780859204826798401, 72416689888874547969, 3128792006916853876291, 143132514626658326870767, 6911638338982428907738641
Offset: 0
-
a[n_] := a[n] = 1 + 2 Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[Exp[x]/(1 + 2 Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
-
N=20; x='x+O('x^N); Vec(serlaplace(exp(x)/(1+2*log(1-x)))) \\ Seiichi Manyama, Oct 20 2021
A330149
Expansion of e.g.f. exp(-x) / (1 + log(1 - x)).
Original entry on oeis.org
1, 0, 2, 7, 47, 368, 3494, 38673, 489341, 6966344, 110199090, 1917589771, 36402276107, 748629861016, 16580304397942, 393443385034069, 9958671117295737, 267824225078212336, 7626444798009902530, 229232204568273395919, 7252798333599466521575, 240948882537990850397536
Offset: 0
-
nmax = 21; CoefficientList[Series[Exp[-x]/(1 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
A343709
a(n) = 1 + 3 * Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 4, 28, 295, 4159, 73348, 1552468, 38336569, 1081926157, 34350646636, 1211796777748, 47023762576987, 1990643657768683, 91291802205304972, 4508735102829489580, 238583762726054522989, 13466532093135977880025, 807606110028529741369396, 51282242176105846536128236
Offset: 0
-
a[n_] := a[n] = 1 + 3 Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Exp[x]/(1 + 3 Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
-
N=20; x='x+O('x^N); Vec(serlaplace(exp(x)/(1+3*log(1-x)))) \\ Seiichi Manyama, Oct 20 2021
A343710
a(n) = 1 + 4 * Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 5, 45, 609, 11009, 248837, 6749629, 213596401, 7725031521, 314310704101, 14209394894765, 706617979262049, 38333841625642785, 2252901018519028901, 142589176837851349757, 9669282207517755852721, 699408060608904410296897, 53752166013267632536864581, 4374061543586452325644329133
Offset: 0
-
a[n_] := a[n] = 1 + 4 Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Exp[x]/(1 + 4 Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
-
N=20; x='x+O('x^N); Vec(serlaplace(exp(x)/(1+4*log(1-x)))) \\ Seiichi Manyama, Oct 20 2021
A368283
Expansion of e.g.f. exp(2*x) / (1 + log(1 - x)).
Original entry on oeis.org
1, 3, 11, 52, 320, 2486, 23402, 258252, 3263528, 46433648, 734322672, 12776283136, 242519067056, 4987324250416, 110454579648688, 2621008072506592, 66341399843669760, 1784150447268259456, 50804574646886197888, 1527058892582680257024
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=2^i+sum(j=1, i, (j-1)!*binomial(i, j)*v[i-j+1])); v;
A368445
Expansion of e.g.f. exp(x) / (1 + log(1 - 3*x)).
Original entry on oeis.org
1, 4, 34, 469, 8815, 208348, 5922118, 196568419, 7459854973, 318560689324, 15116763184978, 789119869380577, 44939583072146251, 2772582488089509028, 184216538154508055062, 13114092114632287359919, 995813104288130697683065, 80342826520464644566291828
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[x]/(1+Log[1-3x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 07 2025 *)
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=1, i, 3^j*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A368450
Expansion of e.g.f. exp(x) / (1 + log(1 - 3*x)/3).
Original entry on oeis.org
1, 2, 8, 61, 695, 10310, 187024, 4002131, 98593949, 2746565218, 85333213856, 2924626915529, 109588276298995, 4456269669580742, 195418762093000328, 9192090435429906463, 461630086359185798777, 24651183861530752336994, 1394716088179233110318104
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=1, i, 3^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A368284
Expansion of e.g.f. exp(-2*x) / (1 + log(1 - x)).
Original entry on oeis.org
1, -1, 3, 0, 32, 182, 1882, 20500, 260136, 3701968, 58565360, 1019110848, 19346296752, 397867297136, 8811800026928, 209100451072672, 5292665533921024, 142338738348972672, 4053176346277660288, 121828547313861426176, 3854597854165079424768
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-2)^i+sum(j=1, i, (j-1)!*binomial(i, j)*v[i-j+1])); v;
A368444
Expansion of e.g.f. exp(x) / (1 + log(1 - 2*x)).
Original entry on oeis.org
1, 3, 17, 155, 1937, 30499, 577793, 12784155, 323427041, 9207390211, 291277318065, 10136705490779, 384848820035057, 15829002092015267, 701141988610115617, 33275461169171553371, 1684504951149122303169, 90604594879948059236099
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=1, i, 2^j*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A368449
Expansion of e.g.f. exp(x) / (1 + log(1 - 2*x)/2).
Original entry on oeis.org
1, 2, 7, 42, 365, 4090, 55699, 890722, 16341849, 338128594, 7786397471, 197460558394, 5467207989957, 164085022299146, 5305738076252587, 183876885720455218, 6798985094507177137, 267160159254659407650, 11116956337133269707319, 488348854052875260086474
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=1, i, 2^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
Showing 1-10 of 11 results.
Comments