cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092484 Expansion of Product_{m>=1} (1 + m^2*q^m).

Original entry on oeis.org

1, 1, 4, 13, 25, 77, 161, 393, 726, 2010, 3850, 7874, 16791, 31627, 69695, 139560, 255997, 482277, 986021, 1716430, 3544299, 6507128, 11887340, 21137849, 38636535, 70598032, 123697772, 233003286, 412142276, 711896765, 1252360770
Offset: 0

Views

Author

Jon Perry, Apr 04 2004

Keywords

Comments

Sum of squares of products of terms in all partitions of n into distinct parts.

Examples

			The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding squares of products are 36, 25, 64, 36 and their sum is a(6) = 161.
		

Crossrefs

Column k=2 of A292189.

Programs

  • Maple
    b:= proc(n, i) option remember; (m->
          `if`(mn, 0, i^2*b(n-i, i-1)))))(i*(i+1)/2)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 10 2017
  • Mathematica
    Take[ CoefficientList[ Expand[ Product[1 + m^2*q^m, {m, 100}]], q], 31] (* Robert G. Wilson v, Apr 05 2005 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1, N, 1+n^2*x^n)) \\ Seiichi Manyama, Sep 10 2017

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Conjecture: log(a(n)) ~ sqrt(2*n) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

Extensions

More terms from Robert G. Wilson v, Apr 05 2004

A292068 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + j^k*x^j).

Original entry on oeis.org

1, 1, -1, 1, -1, 0, 1, -1, -1, -1, 1, -1, -3, -2, 1, 1, -1, -7, -6, 2, -1, 1, -1, -15, -20, 6, -1, 1, 1, -1, -31, -66, 20, 5, 4, -1, 1, -1, -63, -212, 66, 71, 40, -1, 2, 1, -1, -127, -666, 212, 605, 442, 11, 18, -2, 1, -1, -255, -2060, 666, 4439, 4660, 215, 226, -22, 2
Offset: 0

Views

Author

Seiichi Manyama, Sep 12 2017

Keywords

Examples

			Square array begins:
    1,  1,  1,   1,   1, ...
   -1, -1, -1,  -1,  -1, ...
    0, -1, -3,  -7, -15, ...
   -1, -2, -6, -20, -66, ...
    1,  2,  6,  20,  66, ...
		

Crossrefs

Columns k=0..2 give A081362, A022693, A292165.
Rows n=0..2 give A000012, (-1)*A000012, (-1)*A000225.
Main diagonal gives A292072.

Programs

  • Maple
    b:= proc(n, i, k) option remember; (m->
          `if`(mn, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2)
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(b(n-i$2, k)*A(i, k), i=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 12 2017
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[# < n, 0, If[n == #, i!^k, b[n, i-1, k] + If[i > n, 0, i^k b[n-i, i-1, k]]]]&[i(i+1)/2];
    A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[b[n-i, n-i, k] A[i, k], {i, 0, n-1}]];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Nov 20 2019, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import factorial as f
    @cacheit
    def b(n, i, k):
        m=i*(i + 1)/2
        return 0 if mn else i**k*b(n - i, i - 1, k))
    @cacheit
    def A(n, k): return 1 if n==0 else -sum([b(n - i, n - i, k)*A(i, k) for i in range(n)])
    for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # Indranil Ghosh, Sep 14 2017, after Maple program
Showing 1-2 of 2 results.