cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A022629 Expansion of Product_{m>=1} (1 + m*q^m).

Original entry on oeis.org

1, 1, 2, 5, 7, 15, 25, 43, 64, 120, 186, 288, 463, 695, 1105, 1728, 2525, 3741, 5775, 8244, 12447, 18302, 26424, 37827, 54729, 78330, 111184, 159538, 225624, 315415, 444708, 618666, 858165, 1199701, 1646076, 2288961, 3150951, 4303995, 5870539, 8032571, 10881794, 14749051, 19992626
Offset: 0

Views

Author

Keywords

Comments

Sum of products of terms in all partitions of n into distinct parts. - Vladeta Jovovic, Jan 19 2002
Number of partitions of n into distinct parts, when there are j sorts of part j. a(4) = 7: 4, 4', 4'', 4''', 31, 3'1, 3''1. - Alois P. Heinz, Aug 24 2015

Examples

			The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding products are 6,5,8,6 and their sum is a(6) = 25.
		

Crossrefs

Programs

  • Magma
    Coefficients(&*[(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 1] elif i<1 then [0, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i-1));
             [f[1]+g[1], f[2]+g[2]*i]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 02 2012
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
  • Mathematica
    nn=20;CoefficientList[Series[Product[1+i x^i,{i,1,nn}],{x,0,nn}],x]  (* Geoffrey Critzer, Nov 02 2012 *)
    nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
    (* More efficient program: 10000 terms, 4 minutes, 100000 terms, 6 hours *) nmax = 40; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j+1]] += k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 06 2016 *)
  • PARI
    N=66; q='q+O('q^N); Vec(prod(n=1,N, (1+n*q^n) )) \\ Joerg Arndt, Oct 06 2012
    

Formula

Conjecture: log(a(n)) ~ sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, May 08 2018

A077335 Sum of products of squares of parts in all partitions of n.

Original entry on oeis.org

1, 1, 5, 14, 46, 107, 352, 789, 2314, 5596, 14734, 34572, 92715, 210638, 531342, 1250635, 3042596, 6973974, 16973478, 38399806, 91301956, 207992892, 483244305, 1089029008, 2533640066, 5642905974, 12912848789, 28893132440, 65342580250, 144803524640
Offset: 0

Views

Author

Vladeta Jovovic, Nov 30 2002

Keywords

Examples

			The partitions of 4 are 4, 1+3, 2+2, 2+1+1, 1+1+1+1, the corresponding products of squares of parts are 16,9,16,4,1 and their sum is a(4) = 46.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, i^2*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, i^2*b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *)
    Table[Total[Times@@(#^2)&/@IntegerPartitions[n]],{n,0,30}] (* Harvey P. Dale, Apr 29 2018 *)
    Table[Total[Times@@@(IntegerPartitions[n]^2)],{n,0,30}] (* Harvey P. Dale, Sep 07 2023 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    N=22;q='q+O('q^N); Vec(1/prod(n=1,N,1-n^2*q^n)) \\ Joerg Arndt, Aug 31 2015

Formula

G.f.: 1/Product_{m>0} (1 - m^2*x^m).
Recurrence: a(n) = (1/n)*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d^(2*k/d + 1).
a(n) = S(n,1), where S(n,m) = n^2 + Sum_{k=m..n/2} k^2*S(n-k,k), S(n,n) = n^2, S(n,m) = 0 for m > n. - Vladimir Kruchinin, Sep 07 2014
From Vaclav Kotesovec, Mar 16 2015: (Start)
a(n) ~ c * 3^(2*n/3), where
c = 668.1486183948153029651700839617715291485899132694809388646986235... if n=3k
c = 667.8494657534167286226227360927068283390090685342574808235616845... if n=3k+1
c = 667.8481656987523944806949678900876994934226621916594805916358627... if n=3k+2
(End)
In closed form, a(n) ~ (Product_{k>=4}(1/(1 - k^2/3^(2*k/3))) / ((1 - 3^(-2/3)) * (1 - 4*3^(-4/3))) + Product_{k>=4}(1/(1 - (-1)^(2*k/3)*k^2/3^(2*k/3))) / ((-1)^(2*n/3) * (1 + 4/3*(-1/3)^(1/3)) * (1 - (-1/3)^(2/3))) + Product_{k>=4}(1/(1 - (-1)^(4*k/3)*k^2/3^(2*k/3))) / ((-1)^(4*n/3) * (1 + (-1)^(1/3)*3^(-2/3)) * (1 - 4*(-1)^(2/3)*3^(-4/3)))) * 3^(2*n/3 - 1). - Vaclav Kotesovec, Apr 25 2017
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018

A292189 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + j^k*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 13, 7, 3, 1, 1, 16, 35, 25, 15, 4, 1, 1, 32, 97, 91, 77, 25, 5, 1, 1, 64, 275, 337, 405, 161, 43, 6, 1, 1, 128, 793, 1267, 2177, 1069, 393, 64, 8, 1, 1, 256, 2315, 4825, 11925, 7313, 3799, 726, 120, 10
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2017

Keywords

Examples

			Square array begins:
   1, 1,  1,  1,   1, ...
   1, 1,  1,  1,   1, ...
   1, 2,  4,  8,  16, ...
   2, 5, 13, 35,  97, ...
   2, 7, 25, 91, 337, ...
		

Crossrefs

Columns k=0..5 give A000009, A022629, A092484, A265840, A265841, A265842.
Rows 0+1, 2, 3 give A000012, A000079, A007689.
Main diagonal gives A292190.
Cf. A292166.

Programs

  • Maple
    b:= proc(n, i, k) option remember; (m->
          `if`(mn, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2)
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    m = 14;
    col[k_] := col[k] = Product[1 + j^k*x^j, {j, 1, m}] + O[x]^(m+1) // CoefficientList[#, x]&;
    A[n_, k_] := col[k][[n+1]];
    Table[A[n, d-n], {d, 0, m}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)

A265840 Expansion of Product_{k>=1} (1 + k^3*x^k).

Original entry on oeis.org

1, 1, 8, 35, 91, 405, 1069, 3799, 8686, 36744, 86310, 235776, 686329, 1605779, 5230579, 13191702, 30608501, 73907925, 206052723, 433747560, 1324608945, 2995740974, 6973434054, 15364943439, 35816669079, 86662644756, 184871083828, 502089539734, 1098571699830
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=3 of A292189.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + k^3*x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(3*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Conjecture: log(a(n)) ~ 3*sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

A265841 Expansion of Product_{k>=1} (1 + k^4*x^k).

Original entry on oeis.org

1, 1, 16, 97, 337, 2177, 7313, 38529, 108594, 717186, 2053522, 7527458, 30757155, 88042387, 448973459, 1390503396, 4087546309, 12699966117, 49599776261, 124699632310, 608410782855, 1651128186296, 4862631132392, 13170300313769, 39285370060347, 130999461143020
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=4 of A292189.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + k^4*x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(4*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Conjecture: log(a(n)) ~ 4*sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

A265842 Expansion of Product_{k>=1} (1 + k^5*x^k).

Original entry on oeis.org

1, 1, 32, 275, 1267, 11925, 51445, 406183, 1406614, 14690040, 51144366, 251885088, 1481359033, 5108404955, 42614629915, 158222158038, 588574803125, 2360755022421, 13255325882835, 39266011999104, 325719196861377, 1031732678138822, 3791401325667894
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=5 of A292189.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + k^5*x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(5*k)*x^(j*k)/k). - Ilya Gutkovskiy, Oct 18 2018
Conjecture: log(a(n)) ~ 5*sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

A292304 a(n) = [x^n] Product_{k>=1} (1 + n^2*x^k).

Original entry on oeis.org

1, 1, 4, 90, 272, 1275, 49284, 124901, 536640, 1620648, 104040100, 223290012, 880969104, 2485978170, 7454471332, 592164776475, 1138401673472, 4109108002310, 10877348160900, 30962024560494, 72270337440400, 7523649856001916, 13202150810778116, 44577985082575400
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; Table[SeriesCoefficient[Product[(1+n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    Table[SeriesCoefficient[QPochhammer[-n^2, x, 1 + n]/(1 + n^2), {x, 0, n}], {n, 0, 30}]

Formula

Conjecture: a(n) ~ exp(2*sqrt((Pi^2/6 + 2*log(n)^2)*n)) * (Pi^2/6 + 2*log(n)^2)^(1/4) / (2 * sqrt(Pi) * n^(7/4)).

A265844 Expansion of Product_{k>=1} (1 + k^2*x^k)/(1 - k^2*x^k).

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1188, 3456, 10054, 28814, 79280, 215844, 581748, 1528456, 3987384, 10295952, 26130982, 65874532, 164661622, 406787220, 998529752, 2434022304, 5879630196, 14124455856, 33734350692, 80000820426, 188787849968, 443372664504, 1035137265552
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Comments

Convolution of A092484 and A077335.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + k^2*x^k)/(1 - k^2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(2*n/3), where
c = 33024.782174678163138510272317... if mod(n,3) = 0
c = 33024.230416953709449028604542... if mod(n,3) = 1
c = 33024.292470246596667257649964... if mod(n,3) = 2.

A292164 Expansion of Product_{k>=1} (1 - k^2*x^k).

Original entry on oeis.org

1, -1, -4, -5, -7, 27, 17, 167, 110, -42, 10, -706, -4001, -3915, 3079, -18640, 9869, 21403, 130565, 107250, -15661, 420664, 599540, -161785, -1232833, -5836888, -5129796, 6516714, -29068180, -14953045, -41490510, 20261320, 30395771, 441235155, 205289550
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2017

Keywords

Crossrefs

Column k=2 of A292166.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, i^2*b(n-i, i))))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          -add(b(n-i$2)*a(i$2), i=0..n-1))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 10 2017
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
        b[n, i - 1] + If[i > n, 0, i^2*b[n - i, i]]]];
    a[n_] := a[n] = If[n == 0, 1,
        -Sum[b[n - i, n - i]*a[i], {i, 0, n - 1}]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 04 2024, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1, N, 1-n^2*x^n))

Formula

Convolution inverse of A077335.
G.f.: exp(-Sum_{k>=1} Sum_{j>=1} j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 18 2018

A292165 Expansion of Product_{k>=1} 1/(1 + k^2*x^k).

Original entry on oeis.org

1, -1, -3, -6, 6, 5, 40, 11, 226, -516, -186, -844, 3731, -3734, 814, -33819, 85660, -46022, 210342, -411678, 593996, -2980156, 2076721, -3445584, 40785410, -37503158, 98085, -271846888, 336918770, -295108832, 2178341296, -2404059340, 6127604258
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m->
          `if`(mn, 0, i^2*b(n-i, i-1)))))(i*(i+1)/2)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          -add(b(n-i$2)*a(i$2), i=0..n-1))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 10 2017
  • Mathematica
    b[n_, i_] := b[n, i] = Function[m,
         If[m < n, 0, If[n == m, i!^2, b[n, i - 1] +
         If[i > n, 0, i^2*b[n - i, i - 1]]]]][i*(i + 1)/2];
    a[n_] := a[n] = If[n == 0, 1, -Sum[b[n - i, n - i]*a[i], {i, 0, n - 1}]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 21 2022, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(n=1, N, 1+n^2*x^n))

Formula

Convolution inverse of A092484.
From Vaclav Kotesovec, Sep 10 2017: (Start)
a(n) ~ (-1)^n * c * 3^(2*n/3), where
c = 0.717271758899891528435966115495396784611147877234945... if mod(n,3)=0
c = 0.387695187106751505296020614217498222070185848125472... if mod(n,3)=1
c = 0.241939482775588594057384356004734639024152664456553... if mod(n,3)=2
(End)
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^k*j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 18 2018
Showing 1-10 of 12 results. Next