cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077335 Sum of products of squares of parts in all partitions of n.

Original entry on oeis.org

1, 1, 5, 14, 46, 107, 352, 789, 2314, 5596, 14734, 34572, 92715, 210638, 531342, 1250635, 3042596, 6973974, 16973478, 38399806, 91301956, 207992892, 483244305, 1089029008, 2533640066, 5642905974, 12912848789, 28893132440, 65342580250, 144803524640
Offset: 0

Views

Author

Vladeta Jovovic, Nov 30 2002

Keywords

Examples

			The partitions of 4 are 4, 1+3, 2+2, 2+1+1, 1+1+1+1, the corresponding products of squares of parts are 16,9,16,4,1 and their sum is a(4) = 46.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, i^2*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, i^2*b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *)
    Table[Total[Times@@(#^2)&/@IntegerPartitions[n]],{n,0,30}] (* Harvey P. Dale, Apr 29 2018 *)
    Table[Total[Times@@@(IntegerPartitions[n]^2)],{n,0,30}] (* Harvey P. Dale, Sep 07 2023 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    N=22;q='q+O('q^N); Vec(1/prod(n=1,N,1-n^2*q^n)) \\ Joerg Arndt, Aug 31 2015

Formula

G.f.: 1/Product_{m>0} (1 - m^2*x^m).
Recurrence: a(n) = (1/n)*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d^(2*k/d + 1).
a(n) = S(n,1), where S(n,m) = n^2 + Sum_{k=m..n/2} k^2*S(n-k,k), S(n,n) = n^2, S(n,m) = 0 for m > n. - Vladimir Kruchinin, Sep 07 2014
From Vaclav Kotesovec, Mar 16 2015: (Start)
a(n) ~ c * 3^(2*n/3), where
c = 668.1486183948153029651700839617715291485899132694809388646986235... if n=3k
c = 667.8494657534167286226227360927068283390090685342574808235616845... if n=3k+1
c = 667.8481656987523944806949678900876994934226621916594805916358627... if n=3k+2
(End)
In closed form, a(n) ~ (Product_{k>=4}(1/(1 - k^2/3^(2*k/3))) / ((1 - 3^(-2/3)) * (1 - 4*3^(-4/3))) + Product_{k>=4}(1/(1 - (-1)^(2*k/3)*k^2/3^(2*k/3))) / ((-1)^(2*n/3) * (1 + 4/3*(-1/3)^(1/3)) * (1 - (-1/3)^(2/3))) + Product_{k>=4}(1/(1 - (-1)^(4*k/3)*k^2/3^(2*k/3))) / ((-1)^(4*n/3) * (1 + (-1)^(1/3)*3^(-2/3)) * (1 - 4*(-1)^(2/3)*3^(-4/3)))) * 3^(2*n/3 - 1). - Vaclav Kotesovec, Apr 25 2017
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018

A092484 Expansion of Product_{m>=1} (1 + m^2*q^m).

Original entry on oeis.org

1, 1, 4, 13, 25, 77, 161, 393, 726, 2010, 3850, 7874, 16791, 31627, 69695, 139560, 255997, 482277, 986021, 1716430, 3544299, 6507128, 11887340, 21137849, 38636535, 70598032, 123697772, 233003286, 412142276, 711896765, 1252360770
Offset: 0

Views

Author

Jon Perry, Apr 04 2004

Keywords

Comments

Sum of squares of products of terms in all partitions of n into distinct parts.

Examples

			The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding squares of products are 36, 25, 64, 36 and their sum is a(6) = 161.
		

Crossrefs

Column k=2 of A292189.

Programs

  • Maple
    b:= proc(n, i) option remember; (m->
          `if`(mn, 0, i^2*b(n-i, i-1)))))(i*(i+1)/2)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 10 2017
  • Mathematica
    Take[ CoefficientList[ Expand[ Product[1 + m^2*q^m, {m, 100}]], q], 31] (* Robert G. Wilson v, Apr 05 2005 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1, N, 1+n^2*x^n)) \\ Seiichi Manyama, Sep 10 2017

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Conjecture: log(a(n)) ~ sqrt(2*n) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

Extensions

More terms from Robert G. Wilson v, Apr 05 2004

A292418 a(n) = [x^n] Product_{k>=1} (1 + n^2*x^k) / (1 - n^2*x^k).

Original entry on oeis.org

1, 2, 40, 1800, 149024, 21223800, 4609532520, 1414165715200, 581109518753920, 307788983933760954, 204081628466048180200, 165541724073121026987224, 161233041454793035411134240, 185663865439487951708529417080, 249499302292252719726304186789160
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Comments

Convolution of A292304 and A292417.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+n^2*x^k)/(1-n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, ((1+n^2*x^k)/(1-n^2*x^k) +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

a(n) ~ 2 * n^(2*n) * (1 + 2/n^2 + 4/n^4 + 8/n^6 + 14/n^8 + 24/n^10), for coefficients see A015128.
Showing 1-3 of 3 results.