cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A291698 a(n) = [x^n] Product_{k>=1} (1 + n*x^k).

Original entry on oeis.org

1, 1, 2, 12, 20, 55, 294, 497, 1224, 2520, 14410, 21912, 54300, 104286, 220710, 1105215, 1697552, 3839382, 7356762, 14873580, 26275620, 132112596, 188666126, 423247104, 772560600, 1535398150, 2632049290, 4975242048, 21273166572, 30649985160, 64824339630, 116604788800, 223181224992
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

The number of partitions of n into distinct parts where each part can be colored in n different ways. For example, there are 4 partitions of 6 into distinct parts, namely 6, 5 + 1, 4 + 2 and 3 + 2 + 1; allowing for the colorings gives a(6) = 6 + 6*6 + 6*6 + 6*6*6 = 294. - Peter Bala, Aug 31 2017

Crossrefs

Main diagonal of A286957.

Programs

  • Maple
    seq(coeff(mul(1+n*x^k,k=1..n),x,n),n=0..50); # Robert Israel, Aug 30 2017
  • Mathematica
    Table[SeriesCoefficient[Product[1 + n x^k, {k, 1, n}], {x, 0, n}], {n, 0, 32}]
    Table[SeriesCoefficient[QPochhammer[-n, x]/(1 + n), {x, 0, n}], {n, 0, 32}]

Formula

a(n) = A286957(n,n).
a(n) == 0 (mod n); a(n) == n (mod n^2). - Peter Bala, Aug 31 2017
Conjecture: a(n) ~ exp(sqrt(2*(log(n)^2 + Pi^2/3)*n)) * (log(n)^2 + Pi^2/3)^(1/4) / (sqrt(Pi) * (2*n)^(5/4)). - Vaclav Kotesovec, Sep 15 2017

A292414 a(n) = [x^n] Product_{k>=1} (1 + 2^n*x^k).

Original entry on oeis.org

1, 2, 4, 72, 272, 2080, 270400, 2146432, 33751296, 403702272, 1103810790400, 17635156690944, 563431073648640, 13515197331283968, 360331952265379840, 37785849814204784082944, 1209091844251972299456512, 77374499118322174520328192, 3713890953695657990811811840
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+2^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, (1+2^n*x^k +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

Conjecture: log(a(n)) ~ sqrt(2)*log(2)*n^(3/2). - Vaclav Kotesovec, Aug 22 2018

A292417 a(n) = [x^n] Product_{k>=1} 1/(1 - n^2*x^k).

Original entry on oeis.org

1, 1, 20, 819, 70160, 10188775, 2240751636, 692647082799, 286013768613952, 151994274055319070, 101020305070908050100, 82086758986568812837856, 80056656965795630400382608, 92282612223268812357487227077, 124113156850218393012451734737460
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1-n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, 1/(1-n^2*x^k +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

a(n) ~ n^(2*n) * (1 + 1/n^2 + 2/n^4 + 3/n^6 + 5/n^8 + 7/n^10), for coefficients see A000041.

A292418 a(n) = [x^n] Product_{k>=1} (1 + n^2*x^k) / (1 - n^2*x^k).

Original entry on oeis.org

1, 2, 40, 1800, 149024, 21223800, 4609532520, 1414165715200, 581109518753920, 307788983933760954, 204081628466048180200, 165541724073121026987224, 161233041454793035411134240, 185663865439487951708529417080, 249499302292252719726304186789160
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Comments

Convolution of A292304 and A292417.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+n^2*x^k)/(1-n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, ((1+n^2*x^k)/(1-n^2*x^k) +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

a(n) ~ 2 * n^(2*n) * (1 + 2/n^2 + 4/n^4 + 8/n^6 + 14/n^8 + 24/n^10), for coefficients see A015128.
Showing 1-4 of 4 results.