cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A287689 Number of (non-null) connected induced subgraphs in the n-triangular graph.

Original entry on oeis.org

1, 7, 60, 968, 31737, 2069963, 267270032, 68629753640, 35171000942697, 36024807353574279, 73784587576805254652, 302228602363365451957792, 2475873310144021668263093201, 40564787336902311168400640561083, 1329227697997490307154018925966130304
Offset: 2

Views

Author

Eric W. Weisstein, May 29 2017

Keywords

Comments

Also the number of labeled simple graphs with n vertices whose edge-set is connected. - Gus Wiseman, Sep 11 2019

Examples

			From _Gus Wiseman_, Sep 11 2019: (Start)
The a(4) = 60 edge-sets:
  {12}  {12,13}  {12,13,14}  {12,13,14,23}  {12,13,14,23,24}
  {13}  {12,14}  {12,13,23}  {12,13,14,24}  {12,13,14,23,34}
  {14}  {12,23}  {12,13,24}  {12,13,14,34}  {12,13,14,24,34}
  {23}  {12,24}  {12,13,34}  {12,13,23,24}  {12,13,23,24,34}
  {24}  {13,14}  {12,14,23}  {12,13,23,34}  {12,14,23,24,34}
  {34}  {13,23}  {12,14,24}  {12,13,24,34}  {13,14,23,24,34}
        {13,34}  {12,14,34}  {12,14,23,24}
        {14,24}  {12,23,24}  {12,14,23,34}
        {14,34}  {12,23,34}  {12,14,24,34}
        {23,24}  {12,24,34}  {12,23,24,34}
        {23,34}  {13,14,23}  {13,14,23,24}
        {24,34}  {13,14,24}  {13,14,23,34}
                 {13,14,34}  {13,14,24,34}
                 {13,23,24}  {13,23,24,34}
                 {13,23,34}  {14,23,24,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}             {12,13,14,23,24,34}
                 {23,24,34}
(End)
		

Crossrefs

The unlabeled version is A292300.

Programs

  • Mathematica
    Table[With[{g = GraphData[{"Triangular", n}]}, Total[Boole[ConnectedGraphQ[Subgraph[g, #]] & /@ Subsets[VertexList[g]]]]], {n, 2, 5}] - 1
    (* Second program: *)
    g[n_] := g[n] = If[n==0, 1, 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k) * (n-k-1)/2)*g[k], {k, 1, n-1}]/n]; a[n_] := Sum[Binomial[n, i]*g[i], {i, 2, n}]; Table[a[n], {n, 2, 16}] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
  • PARI
    seq(n)={Vec(serlaplace(exp(x + O(x*x^n))*(-x+log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n))))))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = Sum_{i=2..n} binomial(n,i) * A001187(i). - Andrew Howroyd, Jun 07 2017
E.g.f.: exp(x)*(-x + log(Sum_{k>=0} 2^binomial(k, 2)*x^k/k!)). - Andrew Howroyd, Sep 11 2019
a(n) = A006125(n) - A327199(n). - Gus Wiseman, Sep 11 2019

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jun 07 2017

A182100 The number of connected simple labeled graphs with <= n nodes.

Original entry on oeis.org

1, 2, 4, 11, 65, 974, 31744, 2069971, 267270041, 68629753650, 35171000942708, 36024807353574291, 73784587576805254665, 302228602363365451957806, 2475873310144021668263093216, 40564787336902311168400640561099
Offset: 0

Views

Author

Geoffrey Critzer, Apr 11 2012

Keywords

Examples

			From _Gus Wiseman_, Sep 03 2019: (Start)
The a(0) = 1 through a(3) = 11 edge-sets (singletons represent uncovered vertices):
  {}  {}     {}       {}
      {{1}}  {{1}}    {{1}}
             {{2}}    {{2}}
             {{1,2}}  {{3}}
                      {{1,2}}
                      {{1,3}}
                      {{2,3}}
                      {{1,2},{1,3}}
                      {{1,2},{2,3}}
                      {{1,3},{2,3}}
                      {{1,2},{1,3},{2,3}}
(End)
		

Crossrefs

The unlabeled version is A292300(n) + 1.

Programs

  • Mathematica
    nn = 15; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[Exp[x] (Log[g] + 1), {x, 0, nn}], x]

Formula

a(n) = Sum_{i=0..n} binomial(n,i)*A001187(i).
E.g.f.: exp(x)*A(x) where A(x) is e.g.f. for A001187.
a(n) = A327078(n) + n. - Gus Wiseman, Sep 03 2019

A383975 Irregular triangle: T(n,k) gives the number of connected subsets of k edges of the n-simplex up to isometries of the n-simplex, with 0 <= k <= A000217(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 5, 6, 6, 4, 2, 1, 1, 1, 1, 1, 3, 5, 12, 19, 23, 24, 21, 15, 9, 5, 2, 1, 1, 1, 1, 1, 3, 5, 12, 30, 56, 91, 128, 147, 147, 131, 97, 65, 41, 21, 10, 5, 2, 1, 1, 1, 1, 1, 3, 5, 12, 30, 79, 180, 364, 633, 961, 1300, 1551, 1644, 1556, 1311, 980, 663, 402, 221, 115, 56, 24, 11, 5, 2, 1, 1
Offset: 0

Views

Author

Peter Kagey, May 16 2025

Keywords

Comments

Connected subsets of edges are also called "polysticks", "polyedges", and "polyforms".
These are "free" polyforms, in that two polyforms are equivalent if one can be mapped to the other via the n! symmetries of the n-simplex.
Equivalently, T(n,k) is the number of connected unlabeled graphs with k edges and between 1 and n+1 vertices. - Pontus von Brömssen, May 27 2025

Examples

			Triangle begins:
 0 | 1;
 1 | 1, 1;
 2 | 1, 1, 1, 1;
 3 | 1, 1, 1, 3, 2, 1, 1;
 4 | 1, 1, 1, 3, 5, 6, 6, 4, 2, 1, 1;
 5 | 1, 1, 1, 3, 5, 12, 19, 23, 24, 21, 15, 9, 5, 2, 1, 1;
 6 | 1, 1, 1, 3, 5, 12, 30, 56, 91, 128, 147, 147, 131, 97, 65, 41, 21, 10, 5, 2, 1, 1;
		

Crossrefs

Cf. A333333 (cube, row 3), A383490 (dodecahedron), A383973 (octahedron, row 3), A383974 (icosahedron).

Formula

T(n,n) = A002905(n).
The sum of row n is A292300(n+1)+1 for n >= 1. - Pontus von Brömssen, May 26 2025

Extensions

Missing term a(62)=1 inserted and a(73)-a(91) added by Pontus von Brömssen, May 26 2025
Showing 1-3 of 3 results.