A038698 Excess of 4k-1 primes over 4k+1 primes, beginning with prime 2.
0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 6, 5, 6, 5, 6, 5, 6
Offset: 1
References
- Stan Wagon, The Power of Visualization, Front Range Press, 1994, p. 2.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 10000 terms from T. D. Noe)
- Vladimir Pletser, Chart for n=1..100000
Crossrefs
Cf. A156749 (sequence showing Chebyshev bias in prime races (mod 4)), A199547, A267097, A267098, A267107, A292378.
List of primes p such that a(p) = 0 is A007351. List of primes p such that a(p) < 0 is A199547. List of primes p such that a(p) = -1 is A051025. List of integers k such that a(prime(k)) = -1 is A051024. - Ya-Ping Lu, Jan 18 2025
Programs
-
Maple
ans:=[0]; ct:=0; for n from 2 to 2000 do p:=ithprime(n); if (p mod 4) = 3 then ct:=ct+1; else ct:=ct-1; fi; ans:=[op(ans),ct]; od: ans; # N. J. A. Sloane, Jun 24 2016
-
Mathematica
FoldList[Plus, 0, Mod[Prime[Range[2,110]], 4] - 2] Join[{0},Accumulate[If[Mod[#,4]==3,1,-1]&/@Prime[Range[2,110]]]] (* Harvey P. Dale, Apr 27 2013 *)
-
PARI
for(n=2,100,print1(sum(i=2,n,(-1)^((prime(i)+1)/2)),","))
-
Python
from sympy import nextprime; a, p = 0, 2; R = [a] for _ in range(2,88): p=nextprime(p); a += p%4-2; R.append(a) print(*R, sep = ', ') # Ya-Ping Lu, Jan 18 2025
Formula
a(n) = Sum_{k=2..n} (-1)^((prime(k)+1)/2). - Benoit Cloitre, Jun 24 2002
a(n) = (Sum_{k=1..n} prime(k) mod 4) - 2*n (assuming that x mod 4 > 0). - Thomas Ordowski, Sep 21 2012
From Antti Karttunen, Oct 01 2017: (Start)
(End)
From Ridouane Oudra, Nov 04 2024: (Start)
a(n) = Sum_{k=2..n} i^(prime(k)+1), where i is the imaginary unit.
a(n) = Sum_{k=2..n} sin(3*prime(k)*Pi/2).
a(n) = Sum_{k=2..n} A163805(prime(k)).
a(n) = Sum_{k=2..n} A212159(k). (End)
a(n) = a(n-1) + prime(n) (mod 4) - 2, n >= 2. - Ya-Ping Lu, Jan 18 2025
Comments