cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292461 Expansion of (1 - x - x^2 + sqrt((1 - x - x^2)^2 - 4*x^3))/2 in powers of x.

Original entry on oeis.org

1, -1, -1, -1, -1, -2, -4, -8, -17, -37, -82, -185, -423, -978, -2283, -5373, -12735, -30372, -72832, -175502, -424748, -1032004, -2516347, -6155441, -15101701, -37150472, -91618049, -226460893, -560954047, -1392251012, -3461824644, -8622571758, -21511212261
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2017

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2 +Sqrt((1-x-x^2)^2 -4*x^3))/2)); // G. C. Greubel, Aug 13 2018
  • Mathematica
    CoefficientList[Series[(1-x-x^2 +Sqrt[(1-x-x^2)^2 -4*x^3])/2, {x, 0, 50} ], x] (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x-x^2 +sqrt((1-x-x^2)^2 -4*x^3))/2) \\ G. C. Greubel, Aug 13 2018
    

Formula

Convolution inverse of A292460.
Let f(x) = (1 - x - x^2 - sqrt((1 - x - x^2)^2 - 4*x^3))/(2*x^3).
G.f.: 1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(... (continued fraction).
G.f.: 1/f(x) = 1 - x - x^2 - x^3*f(x).
a(n) = -A292460(n-3) for n > 2.
a(n) ~ -5^(1/4) * phi^(2*n - 2) / (2 * sqrt(Pi) * n^(3/2)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Sep 17 2017, simplified Dec 06 2021
Conjecture D-finite with recurrence: n*a(n) +(-2*n+3)*a(n-1) +(-n+3)*a(n-2) +(-2*n+9)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Jan 24 2020

A308846 Expansion of e.g.f. x*exp(-x) / BesselI(1,2*x).

Original entry on oeis.org

1, -1, 0, 2, -1, -11, 11, 125, -181, -2443, 4534, 73116, -164075, -3106169, 8150624, 177689590, -533231545, -13167063415, 44461467464, 1226832808294, -4603245727023, -140381127928757, 579412786145335, 19352381237997941, -87137414891475575, -3163451350469601721, 15431005593881754746
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 28 2019

Keywords

Comments

E.g.f. is inverse of e.g.f. for A001006 (Motzkin numbers).

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[x Exp[-x]/BesselI[1, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 26}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(-x) / besseli(1,2*x))) \\ Michel Marcus, Jul 02 2019

Formula

E.g.f.: 1 / Sum_{k>=0} A001006(k)*x^k/k!.
Showing 1-2 of 2 results.