cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292460 Expansion of (1 - x - x^2 - sqrt((1 - x - x^2)^2 - 4*x^3))/(2*x^3) in powers of x.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047, 1392251012, 3461824644, 8622571758, 21511212261, 53745962199, 134474581374
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2017

Keywords

Comments

Number of U_{k}D-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths. - Sergey Kirgizov, Apr 08 2018

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2 -Sqrt((1-x-x^2)^2 -4*x^3))/(2*x^3))); // G. C. Greubel, Aug 13 2018
  • Mathematica
    CoefficientList[Series[(1-x-x^2 -Sqrt[(1-x-x^2)^2 -4*x^3])/(2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x-x^2 -sqrt((1-x-x^2)^2 -4*x^3))/(2*x^3)) \\ G. C. Greubel, Aug 13 2018
    

Formula

G.f.: 1/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(... (continued fraction).
a(n) = A004148(n+1).
a(n) ~ 5^(1/4) * phi^(2*n + 4) / (2*sqrt(Pi)*n^(3/2)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Sep 17 2017
D-finite with recurrence: (n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Jan 23 2020
a(0) = a(1) = 1; a(n) = a(n-1) + a(n-2) + Sum_{k=0..n-3} a(k) * a(n-k-3). - Ilya Gutkovskiy, Nov 09 2021