A292460 Expansion of (1 - x - x^2 - sqrt((1 - x - x^2)^2 - 4*x^3))/(2*x^3) in powers of x.
1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047, 1392251012, 3461824644, 8622571758, 21511212261, 53745962199, 134474581374
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2 -Sqrt((1-x-x^2)^2 -4*x^3))/(2*x^3))); // G. C. Greubel, Aug 13 2018 -
Mathematica
CoefficientList[Series[(1-x-x^2 -Sqrt[(1-x-x^2)^2 -4*x^3])/(2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 13 2018 *)
-
PARI
x='x+O('x^50); Vec((1-x-x^2 -sqrt((1-x-x^2)^2 -4*x^3))/(2*x^3)) \\ G. C. Greubel, Aug 13 2018
Formula
G.f.: 1/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(... (continued fraction).
a(n) = A004148(n+1).
a(n) ~ 5^(1/4) * phi^(2*n + 4) / (2*sqrt(Pi)*n^(3/2)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Sep 17 2017
D-finite with recurrence: (n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Jan 23 2020
a(0) = a(1) = 1; a(n) = a(n-1) + a(n-2) + Sum_{k=0..n-3} a(k) * a(n-k-3). - Ilya Gutkovskiy, Nov 09 2021
Comments