cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A292476 Number of solutions to +-1 +- 3 +- 5 +- 7 +- ... +- (4*n-1) = 0.

Original entry on oeis.org

1, 0, 2, 2, 8, 20, 68, 206, 692, 2306, 7930, 27492, 96792, 343670, 1231932, 4447510, 16164914, 59086618, 217091832, 801247614, 2969432270, 11045446688, 41224168020, 154329373022, 579377940390, 2180684278698, 8227240466520, 31107755899600
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2017

Keywords

Examples

			For n=2 the 2 solutions are +1-3-5+7 = 0 and -1+3+5-7 = 0.
For n=3 the 2 solutions are +1+3+5-7+9-11 = 0 and -1-3-5+7-9+11 = 0.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[Product[x^(2k - 1) + 1/x^(2k - 1), {k, 1, 2n}], {x, 0, 0}];
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Mar 10 2023 *)
  • PARI
    {a(n) = polcoeff(prod(k=1, 2*n, x^(2*k-1)+1/x^(2*k-1)), 0)}

Formula

Constant term in the expansion of Product_{k=1..2*n} (x^(2*k-1)+1/x^(2*k-1)).
a(n) = 2*A156700(n) for n > 0.

A292497 Number of solutions to 1^2 +- 3^2 +- 5^2 +- 7^2 +- ... +- (4*n-1)^2 = 0.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 6, 0, 20, 5, 258, 62, 2510, 914, 24285, 16403, 263945, 222240, 3068971, 3241157, 35286928, 46638022, 426740187, 650095127, 5330192371, 9185814630, 67064945191, 129902075662, 864443143567, 1833530501143, 11336065334984, 25990268638322
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2017

Keywords

Crossrefs

Formula

For n>0 constant term in the expansion of 1/2 * Product_{k=1..2*n} (x^(2*k-1)^2+1/x^(2*k-1)^2).
a(n) = A292496(n)/2 for n>0.

A292522 Number of solutions to +- 1^3 +- 3^3 +- 5^3 +- 7^3 +- ... +- (4*n-1)^3 = 0.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 2, 6, 2, 10, 118, 88, 254, 3308, 2558, 9578, 84568, 121804, 496396, 3312400, 5755724, 19021024, 116780256, 241754350, 883730786, 4923089216, 11668601596, 42357336066, 205859270250, 538878582526, 1974181071852, 9194146886086, 26277093562150
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2017

Keywords

Examples

			For n=8 the 2 solutions are
+1^3-3^3-5^3+7^3-9^3+11^3+13^3-15^3-17^3+19^3+21^3-23^3+25^3-27^3-29^3+31^3 = 0 and
-1^3+3^3+5^3-7^3+9^3-11^3-13^3+15^3+17^3-19^3-21^3+23^3-25^3+27^3+29^3-31^3 = 0.
		

Crossrefs

Formula

Constant term in the expansion of Product_{k=1..2*n} (x^((2*k-1)^3)+1/x^((2*k-1)^3)).

Extensions

a(29)-a(34) from Alois P. Heinz, Sep 18 2017

A292550 a(n) = smallest k >= 1 such that {1, 3^n, 5^n, ... , (4*k-1)^n} can be partitioned into two sets with equal sums.

Original entry on oeis.org

1, 2, 4, 8, 10, 14, 19
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2017

Keywords

Examples

			n = 0
1^0 = 3^0.
n = 1
1^1 + 7^1 = 3^1 + 5^1.
n = 2
1^2 + 7^2 + 11^2 + 13^2 = 3^2 + 5^2 + 9^2 + 15^2.
n = 3
1^3 + 7^3 + 11^3 + 13^3 + 19^3 + 21^3 + 25^3 + 31^3 = 3^3 + 5^3 + 9^3 + 15^3 + 17^3 + 23^3 + 27^3 + 29^3.
n = 4
1^4 + 5^4 + 13^4 + 17^4 + 19^4 + 25^4 + 27^4 + 29^4 + 31^4 + 39^4 = 3^4 + 7^4 + 9^4 + 11^4 + 15^4 + 21^4 + 23^4 + 33^4 + 35^4 + 37^4.
n = 5
1^5 + 3^5 + 7^5 + 11^5 + 17^5 + 21^5 + 33^5 + 35^5 + 37^5 + 39^5 + 41^5 + 43^5 + 51^5 + 53^5 = 5^5 + 9^5 + 13^5 + 15^5 + 19^5 + 23^5 + 25^5 + 27^5 + 29^5 + 31^5 + 45^5 + 47^5 + 49^5 + 55^5.
		

Crossrefs

Cf. A019568 (similar sequence).

Extensions

a(5)-a(6) from Alois P. Heinz, Sep 18 2017
Showing 1-4 of 4 results.