cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A303643 Numbers k such that k and phi(k) are in A292544.

Original entry on oeis.org

1, 1664, 6815744, 10092544, 27917287424, 4707284156416, 5506148073472, 7060926234624, 8259222110208, 114349209288704, 108649341010313216, 468374361246531584, 1918461383665793368064, 7858017827495089635590144, 11635911013790805806546944, 183907840308875463202177024
Offset: 1

Views

Author

Max Alekseyev and Altug Alkan, Apr 27 2018

Keywords

Examples

			1 is in A292544, and eulerphi(1)=1, so 1 is a term.
1664 and 768=eulerphi(1668) are both in A292544, so 1664 is a term.
		

Crossrefs

Programs

  • PARI
    isA292544(n) = Mod(2, n)^eulerphi(n)==eulerphi(n);
    isok(n) = isA292544(n) && isA292544(eulerphi(n));
    
  • PARI
    { ZK(m) = my(z,k); z=znorder(Mod(2,m)); k=znlog(eulerphi(m),Mod(2,m)); if(type(k)!="t_INT",return()); [z,k]; }
    { getpowerof2(m) = my(m2,t,zk,zk2,r);
        m2 = eulerphi(m);
        t = valuation(m2,2);
        m2 \= 2^t;
        if( m2==1, return(0));
        zk=ZK(m);
        zk2=ZK(m2);
        if(!zk || !zk2, return());
        r = [zk[1],zk2[1],zk[2]-t-zk2[2]+1];  \\ solving r[1] * i = r[2] * j + r[3]
        r /= content(r);
        if( gcd(r[1],r[2])>1, return());
        ((r[2]*lift(Mod(-r[3]/r[2],r[1])) + r[3])/r[1] + r[2]*x)*zk[1] - zk[2] + 1;} \\ getpowerof2(m) returns z*i - k + 1 with x parameter (see formula section), i.e., getpowerof2(13) returns 12*x+7, that is, 13*2^(12*x+7) is a term for all x >= 0.

Formula

Following steps can be used in order to produce terms of this sequence.
(1) Take odd m, find z and k (see formula section of A292544).
(2) Represent phi(m) = 2^t*m', where m' is odd (i.e., m' = A053575(m)).
(3) For this m', find z' and k'.
(4) Solve z*i - k + t = z'*j - k' + 1 for positive i, j.
(5) Each such solution gives a term m*2^(z*i - k + 1) of this sequence.
For all x >= 0, 13*2^(12*x+7), 77*2^(60*x+17), 137*2^(136*x+35), 173*2^(1204*x+259), 193*2^(96*x+49), 269*2^(8844*x+6567), 411*2^(136*x+34), 519*2^(1204*x+258), 557*2^(38364*x+28635), 563*2^(19670*x+9836), 581*2^(2460*x+789), 641*2^(64*x+33), 653*2^(52812*x+39447), 667*2^(4620*x+3405), 769*2^(384*x+193), 807*2^(8844*x+6566) are terms of this sequence (m < 10^3 where m*2^(z*i - k + 1) is the corresponding form).

A318262 Numbers m such that 2^phi(m) mod m is a prime power (in the sense of A246655).

Original entry on oeis.org

6, 12, 14, 20, 24, 28, 30, 40, 48, 56, 60, 62, 72, 80, 84, 96, 112, 120, 124, 126, 144, 168, 192, 224, 240, 248, 252, 254, 272, 288, 320, 336, 340, 384, 408, 448, 480, 496, 504, 508, 510, 544, 576, 584, 640, 672, 680, 768, 816, 896, 960, 992, 1008, 1016, 1020
Offset: 1

Views

Author

Peter Luschny, Sep 03 2018

Keywords

Comments

m is in this sequence if and only if 2^phi(m) mod m = 2^k for some k > 0.
There is no prime power in this sequence. Perfect power terms of this sequence are 144, 576, 9216, 36864, 589824, 884736, 1638400, 2359296, 3211264, 6553600, 7077888, ... - Altug Alkan, Sep 04 2018

Examples

			The odd part of the first few terms can be arranged as follows:
3,
3, 7,                         5,
3, 7, 15,                     5,
3, 7, 15, 31,              9, 5, 21,
3, 7, 15, 31, 63,          9,    21,
3, 7, 15, 31, 63, 127, 17, 9, 5, 21, 85,
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2^10], And[PrimePowerQ@ #, ! PrimeQ@ #] &@ Mod[2^EulerPhi@ #, #] &] (* Michael De Vlieger, Sep 04 2018 *)
  • PARI
    isok(n) = isprimepower(lift(Mod(2, n)^eulerphi(n))); \\ Michel Marcus, Sep 06 2018
  • Sage
    def isA318262(n):
        m = power_mod(2, euler_phi(n), n)
        return m.is_prime_power()
    def A318262_list(search_bound):
        return [n for n in range(2,search_bound+1,2) if isA318262(n)]
    print(A318262_list(1020))
    

A292742 Odd numbers k such that 2^psi(k) == phi(k) (mod k).

Original entry on oeis.org

1, 5, 10393, 45411263, 31761301667, 70697569679
Offset: 1

Views

Author

Altug Alkan, Sep 22 2017

Keywords

Comments

a(7) > 5*10^11. - Giovanni Resta, Sep 23 2017

Examples

			10393 = 19*547 is a term because 2^((19 + 1)*(547 + 1)) == (19 - 1)*(547 - 1) (mod 19*547).
		

Crossrefs

Programs

  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    isok(n) = n%2==1 && Mod(2, n)^a001615(n)==eulerphi(n); \\ after Charles R Greathouse IV at A001615

Extensions

a(5)-a(6) from Giovanni Resta, Sep 23 2017

A319314 Numbers k such that 2^phi(k) == phi(k)^2 (mod k^2).

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 10, 12, 384, 640, 768, 896, 960, 24576, 49152, 950272, 1425408, 1572864, 3145728, 10485760, 19398656, 65011712, 100663296, 110057537, 201326592, 220115074, 671088640, 1879048192
Offset: 1

Views

Author

Altug Alkan, Sep 17 2018

Keywords

Comments

Sequence is infinite, i.e., 3*2^(3*(t-1)-(-1)^t) is a term for all t > 0.
Prime terms (5, 110057537, ...) are in A246568 based on case A = +1.

Crossrefs

Programs

  • Magma
    [1] cat [n: n in [1..10^6] | 2^EulerPhi(n) mod n^2 eq EulerPhi(n)^2]; // Vincenzo Librandi, Sep 20 2018
  • PARI
    isok(n) = Mod(2, n^2)^eulerphi(n)==eulerphi(n)^2;
    
Showing 1-4 of 4 results.